首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   3篇
  国内免费   2篇
安全科学   7篇
废物处理   3篇
环保管理   16篇
综合类   17篇
基础理论   44篇
污染及防治   17篇
评价与监测   4篇
社会与环境   2篇
灾害及防治   3篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   6篇
  2018年   6篇
  2017年   5篇
  2016年   7篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   4篇
  2009年   11篇
  2008年   8篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1994年   1篇
排序方式: 共有113条查询结果,搜索用时 0 毫秒
111.
Recent debates around the meaning and implications of compassionate conservation suggest that some conservationists consider emotion a false and misleading basis for moral judgment and decision making. We trace these beliefs to a long-standing, gendered sociocultural convention and argue that the disparagement of emotion as a source of moral understanding is both empirically and morally problematic. According to the current scientific and philosophical understanding, reason and emotion are better understood as partners, rather than opposites. Nonetheless, the two have historically been seen as separate, with reason elevated in association with masculinity and emotion (especially nurturing emotion) dismissed or delegitimated in association with femininity. These associations can be situated in a broader, dualistic, and hierarchical logic used to maintain power for a dominant male (White, able-bodied, upper class, heterosexual) human class. We argue that emotion should be affirmed by conservationists for the novel and essential insights it contributes to conservation ethics. We consider the specific example of compassion and characterize it as an emotional experience of interdependence and shared vulnerability. This experience highlights conservationists’ responsibilities to individual beings, enhancing established and widely accepted beliefs that conservationists have a duty to protect populations, species, and ecosystems (or biodiversity). We argue compassion, thus understood, should be embraced as a core virtue of conservation.  相似文献   
112.
Biodiversity conservation decisions are difficult, especially when they involve differing values, complex multidimensional objectives, scarce resources, urgency, and considerable uncertainty. Decision science embodies a theory about how to make difficult decisions and an extensive array of frameworks and tools that make that theory practical. We sought to improve conceptual clarity and practical application of decision science to help decision makers apply decision science to conservation problems. We addressed barriers to the uptake of decision science, including a lack of training and awareness of decision science; confusion over common terminology and which tools and frameworks to apply; and the mistaken impression that applying decision science must be time consuming, expensive, and complex. To aid in navigating the extensive and disparate decision science literature, we clarify meaning of common terms: decision science, decision theory, decision analysis, structured decision-making, and decision-support tools. Applying decision science does not have to be complex or time consuming; rather, it begins with knowing how to think through the components of a decision utilizing decision analysis (i.e., define the problem, elicit objectives, develop alternatives, estimate consequences, and perform trade-offs). This is best achieved by applying a rapid-prototyping approach. At each step, decision-support tools can provide additional insight and clarity, whereas decision-support frameworks (e.g., priority threat management and systematic conservation planning) can aid navigation of multiple steps of a decision analysis for particular contexts. We summarize key decision-support frameworks and tools and describe to which step of a decision analysis, and to which contexts, each is most useful to apply. Our introduction to decision science will aid in contextualizing current approaches and new developments, and help decision makers begin to apply decision science to conservation problems.  相似文献   
113.
Recently emerged brook charr (Salvelinus fontinalis) foraging in still-water pools along the sides of streams tend to be either sedentary, feeding from the lower portion of the water column (a sit-and-wait tactic), or very active, feeding from the upper portion of the water column (an active search tactic). We tested whether the individual differences in foraging behavior were associated with baseline concentrations and responses of cortisol, a steroid hormone linked to personality differences in a variety of animals including fishes. We quantified the proportion of time spent on moving by focal charr in the field and then capturing them. Captured individuals were either (i) sacrificed immediately to quantify baseline cortisol concentrations, (ii) held in an unfamiliar field environment for 15 min and then sacrificed to quantify cortisol concentrations in response to handling and holding in a novel field environment, or (iii) held in an unfamiliar field environment with a white Plexiglas base (stressor) for 15 min to quantify cortisol concentrations in response to a novel object. Eleven statistical models relating cortisol concentrations to the proportion of time individuals spent on moving while searching for prey were compared using multi-model inferencing. Cortisol concentrations were higher for charr that spent a lower proportion of time on moving in the field than for charr that spent a higher proportion of time on moving. For a given proportion of time spent on moving, mean cortisol concentrations between baseline and experimental treatments, our measure of cortisol response, did not differ markedly. Our findings suggest that the foraging tactics displayed by wild brook charr in the field could reflect differences in how individuals perceive their environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号