首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4043篇
  免费   100篇
  国内免费   53篇
安全科学   250篇
废物处理   153篇
环保管理   831篇
综合类   468篇
基础理论   1013篇
环境理论   3篇
污染及防治   959篇
评价与监测   312篇
社会与环境   166篇
灾害及防治   41篇
  2023年   31篇
  2022年   41篇
  2021年   46篇
  2020年   57篇
  2019年   70篇
  2018年   85篇
  2017年   123篇
  2016年   140篇
  2015年   109篇
  2014年   134篇
  2013年   351篇
  2012年   185篇
  2011年   236篇
  2010年   182篇
  2009年   203篇
  2008年   210篇
  2007年   221篇
  2006年   205篇
  2005年   178篇
  2004年   156篇
  2003年   138篇
  2002年   137篇
  2001年   97篇
  2000年   71篇
  1999年   63篇
  1998年   49篇
  1997年   66篇
  1996年   51篇
  1995年   54篇
  1994年   58篇
  1993年   47篇
  1992年   39篇
  1991年   31篇
  1990年   29篇
  1989年   27篇
  1988年   23篇
  1987年   17篇
  1986年   17篇
  1985年   23篇
  1984年   18篇
  1983年   28篇
  1982年   22篇
  1981年   32篇
  1980年   19篇
  1979年   18篇
  1978年   13篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1969年   4篇
排序方式: 共有4196条查询结果,搜索用时 234 毫秒
71.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   
72.
The need for scientifically defensible water quality standards for nonpoint source pollution control continues to be a pressing environmental issue. The probability of impact at differing levels of nonpoint source pollution was determined using the biological response of instream organisms empirically obtained from a statistical survey. A conditional probability analysis was used to calculate a biological threshold of impact as a function of the likelihood of exceeding a given value of pollution metric for a specified geographic area. Uncertainty and natural variability were inherently incorporated into the analysis through the use of data from a probabilistic survey. Data from wadable streams in the mid‐Atlantic area of the U.S. were used to demonstrate the approach. Benthic macroinvertebrate community index values (EPT taxa richness) were used to identify impacted stream communities. Percent fines in substrate (silt/clay fraction, > 0.06 mm) were used as a surrogate indicator for sedimentation. Thresholds of impact due to sedimentation were identified by three different techniques, and were in the range of 12 to 15 percent fines. These values were consistent with existing literature from laboratory and field studies on the impact of sediments on aquatic life in freshwater streams. All results were different from values determined from current regulatory guidance. Finally, it was illustrated how these thresholds could be used to develop criterion for protection of aquatic life in streams.  相似文献   
73.
Rapid land development is raising concern regarding the ability of urbanizing watersheds to sustain adequate base flow during periods of drought. Long term streamflow records from unregulated watersheds of the lower to middle Delaware River basin are examined to evaluate the impact of urbanization and imperviousness on base flow. Trends in annual base flow volumes, seven‐day low flows, and runoff ratios are determined for six urbanizing watersheds and four reference watersheds across three distinct physiographic regions. Hydrograph separation is used to determine annual base flow and stormflow volumes, and nonparametric trend tests are conducted on the resulting time series. Of the watersheds examined, the expected effects of declining base flow volumes and seven‐day low flows and increasing stormflows are seen in only one watershed that is approximately 20 percent impervious and has been subject to a net water export over the past 15 years. Both interbasin transfers and hydrologic mechanisms are invoked to explain these results. The results show that increases in impervious area may not result in measurable reductions in base flow at the watershed scale.  相似文献   
74.
Remotely sensed imagery is becoming a common source of environmental data. Consequently, there is an increasing need for tools to assess the accuracy and information content of such data. Particularly when the spatial resolution of imagery is fine, the accuracy of image processing is determined by comparisons with field data. However, the nature of error is more difficult to assess. In this paper we describe a set of tools intended for such an assessment when tree objects are extracted and field data are available for comparison. These techniques are demonstrated on individual tree locations extracted from an IKONOS image via local maximum filtering. The locations of the extracted trees are compared with field data to determine the number of found and missed trees. Aspatial and spatial (Voronoi) analysis methods are used to examine the nature of errors by searching for trends in characteristics of found and missed trees. As well, analysis is conducted to assess the information content of found trees.  相似文献   
75.
<正>Mercury is a global pollutant due to its widespread use,emission,and long-range transport(Blum,2013;Pacyna et al.,2010).It is considered a priority pollutant due to its neurological toxicity,persistence,and bioaccumulation(Pacyna et al.,2010;Sharma et al.,2015).Mercury pollution can occur when products that contain mercury are improperly disposed of and mercury is released into the air,water,and soil(Zhang and Wong,2007).An estimated 22%of the annual world usage of mercury is in electrical equipment such as batteries,thermometers,and discharge lamps,and electronic devices such as monitors and  相似文献   
76.
Kinetics of phenol and chlorophenol utilization by Acinetobacter species   总被引:9,自引:0,他引:9  
Hao OJ  Kim MH  Seagren EA  Kim H 《Chemosphere》2002,46(6):797-807
Although microbial transformations via cometabolism have been widely observed, the few available kinetic models of cometabolism have not adequately addressed the case of inhibition from both the growth and nongrowth substrates. The present study investigated the degradation kinetics of self-inhibitory growth (phenol) and nongrowth (4-chlorophenol, 4-CP) substrates, present individually and in combination. Specifically, batch experiments were performed using an Acinetobacter isolate growing on phenol alone and with 4-CP present. In addition, batch experiments were also performed to evaluate the transformation of 4-CP by resting, phenol-induced Acinetobacter cultures. The Haldane kinetic model adequately predicted the biodegradation of phenol alone, although a slight discrepancy was noted in cases of higher initial phenol concentrations. Similarly, a Haldane model for substrate utilization was also able to describe the trends in 4-CP transformation by the resting cell cultures. The 4-CP transformation by the Acinetobacter species growing on phenol was modeled using a competitive kinetic model of cometabolism, which included growth and nongrowth substrate inhibition and cross-inhibition terms. Excellent agreement was obtained between the model predictions using experimentally estimated parameter values and the experimental data for the synchronous disappearance of phenol and 4-CP.  相似文献   
77.
Passive air sampling theory for semivolatile organic compounds   总被引:2,自引:0,他引:2  
The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.  相似文献   
78.
A major source of particle number emissions is road traffic. However, scientific knowledge concerning secondary particle formation and growth of ultrafine particles within vehicle exhaust plumes is still very limited. Volatile nanoparticle formation and subsequent growth conditions were analyzed here to gain a better understanding of "real-world" dilution conditions. Coupled computational fluid dynamics and aerosol microphysics models together with measured size distributions within the exhaust plume of a diesel car were used. The impact of soot particles on nucleation, acting as a condensational sink, and the possible role of low-volatile organic components in growth were assessed. A prescribed reduction of soot particle emissions by 2 orders of magnitude (to capture the effect of a diesel particle filter) resulted in concentrations of nucleation-mode particles within the exhaust plume that were approximately 1 order of magnitude larger. Simulations for simplified sulfuric acid-water vapor gas-oil containing nucleation-mode particles show that the largest particle growth is located in a recirculation zone in the wake of the car. Growth of particles within the vehicle exhaust plume up to detectable size depends crucially on the relationship between the mass rate of gaseous precursor emissions and rapid dilution. Chassis dynamometer measurements indicate that emissions of possible hydrocarbon precursors are significantly enhanced under high engine load conditions and high engine speed. On the basis of results obtained for a diesel passenger car, the contributions from light diesel vehicles to the observed abundance of measured nucleation-mode particles near busy roads might be attributable to the impact of two different time scales: (1) a short one within the plume, marked by sufficient precursor emissions and rapid dilution; and (2) a second and comparatively long time scale resulting from the mix of different precursor sources and the impact of atmospheric chemistry.  相似文献   
79.
Chu WH  Gao NY  Templeton MR  Yin DQ 《Chemosphere》2011,83(5):647-651
The formation of disinfection by-products (DBPs), including both nitrogenous disinfection by-products (N-DBPs) and carbonaceous disinfection by-products (C-DBPs), was investigated upon chlorination of water samples following two treatment processes: (i) coagulation-inclined plate sedimentation (IPS)-filtration and (ii) coagulation-dissolved air flotation (DAF)-filtration. The removal of algae, dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and UV254 by coagulation-DAF-filtration was superior to coagulation-IPS-filtration. On average, 53%, 53% and 31% of DOC, DON and UV254 were removed by coagulation-DAF-filtration process, which were higher than 47%, 31% and 27% of that by coagulation-IPS-filtration process. Additionally, coagulation-IPS-filtration performed less well at removing the low molecular weight organics than coagulation-DAF-filtration process. The concentrations of chloroform, dichloroacetamide (DCAcAm) and dichloroacetonitrile (DCAN) formed during chlorination after coagulation-DAF-filtration reached their maximum values of 13, 1.5 and 4.7 μg L−1, respectively, and were lower than those after coagulation-IPS-filtration with the maximum detected levels of 17, 2.9 and 6.3 μg L−1. However, the trichloronitromethane (TCNM) concentration after the two processes was similar, suggesting that DON may have less of a contribution to TCNM formation than DCAcAm and DCAN.  相似文献   
80.
Phytoextraction, the use of plants to extract contaminants from soils and groundwater, is a promising approach for cleaning up soils contaminated with heavy metals. In order to enhance phytoextraction the use of chelating agents has been proposed. This study aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposed, as an alternative to ethylene diamine tetraacetate (EDTA). EDDS revealed a higher toxicity to tobacco (Nicotiana tabacum) in comparison to EDTA, but no toxicity to microorganisms. The uptake of Cu was increased by the addition of EDTA and EDDS, while no increase was observed in the uptake of Cd. Both chelating agents showed a very low root to shoot translocation capability and the translocation factor was lower than the one of the control. Heavy metals where significantly more phytoavailable than in the control, even after harvesting, resulting in a high heavy metal leaching possibility, probably owing to a low biodegradation rate of EDDS. New seedlings which were transplanted into the EDDS treated pots 7d after the phytoextraction experiment, showed signs of necrosis and chlorosis, which resulted in a significantly lower biomass in comparison to the control. The seedlings on the EDTA treated pots showed no toxicity signs. Contrary to previous opinions the results of this study revealed the chelating agents EDTA and EDDS as unsuitable for enhanced phytoextraction using tobacco.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号