首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42119篇
  免费   542篇
  国内免费   570篇
安全科学   1358篇
废物处理   1589篇
环保管理   6020篇
综合类   6916篇
基础理论   11720篇
环境理论   27篇
污染及防治   10848篇
评价与监测   2437篇
社会与环境   2013篇
灾害及防治   303篇
  2022年   319篇
  2021年   323篇
  2020年   317篇
  2019年   329篇
  2018年   601篇
  2017年   596篇
  2016年   887篇
  2015年   760篇
  2014年   1013篇
  2013年   3178篇
  2012年   1316篇
  2011年   1864篇
  2010年   1513篇
  2009年   1600篇
  2008年   1827篇
  2007年   1961篇
  2006年   1692篇
  2005年   1423篇
  2004年   1434篇
  2003年   1322篇
  2002年   1307篇
  2001年   1642篇
  2000年   1186篇
  1999年   758篇
  1998年   586篇
  1997年   592篇
  1996年   597篇
  1995年   659篇
  1994年   587篇
  1993年   540篇
  1992年   536篇
  1991年   504篇
  1990年   510篇
  1989年   523篇
  1988年   456篇
  1987年   394篇
  1986年   387篇
  1985年   414篇
  1984年   432篇
  1983年   432篇
  1982年   454篇
  1981年   391篇
  1980年   346篇
  1979年   375篇
  1978年   298篇
  1977年   266篇
  1976年   252篇
  1975年   254篇
  1974年   242篇
  1972年   268篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Amino acids constitute one of the largest inputs of organic nitrogen (N) to most polar soils and have been hypothesized to be important in regulating vegetational succession and productivity in Arctic ecosystems. Our understanding of amino acid cycling in these soils, however, is poor. The aim of this study was to investigate the size and rate of turnover of the amino acid pool in a range of Arctic and Antarctic soils. Our results indicate that in polar soils with either high or low ornithogenic inputs the amino acid pool is small in comparison to the inorganic N pool (NO? 3 and NH+ 4). The free amino acid pool constituted only a small proportion of the total dissolved organic nitrogen (DON) pool in these soils. Here we show that these low concentrations may be due to rapid use by the soil microbial community in both Arctic and Antarctic soils. The turnover of the amino acid pool in soil was extremely rapid, with a half-life ranging from 2 to 24 h, indicating that this N pool can be turned over many hundred times each summer when polar soils are frequently unfrozen. The implications of amino acids in N cycling and plant and microbial nutrition are discussed.  相似文献   
152.
Critical N loads for ombrotrophic bogs, which often contain rare and N-sensitive plants (especially those in lower plant groups: lichens, mosses and liverworts), are based on very few experimental data from measured, low background N deposition areas. Additionally the relative effects of reduced versus oxidised N are largely unknown. This paper describes an automated field exposure system (30 km S. of Edinburgh, Scotland) for treating ombrotrophic bog vegetation with fine droplets of oxidised N (NaNO3) and reduced N (NH4Cl). Whim Moss exists in an area of low ambient N deposition (ca. 8 kg N ha?1 y?1), the sources and quantification of which are described. The wet N treatment system is run continuously, and is controlled/activated by wind speed and rainfall to provide a unique simulation of “real worl” treatment patterns (no rain=no treatment). Simulated precipitation is supplied at ionic concentrations below 4 mM in rainwater collected on site. Treatments provide a replicated dose response to 16, 32 and 64 kg N ha?1 y?1 adjusted for ambient deposition (8 kg N ha?1 y?1). The 16 and 64 kg N ha?1 y?1 are duplicated with a P+K supplement. Baseline soil chemistry and foliar nutrient status was established for all 44 plots for Calluna vulgaris, Sphagnum capillifolium, Hypnum jutlandicum and Cladonia portentosa.  相似文献   
153.
Using resource-monitoring data from seven protected areas, the effectiveness of three campfire policies—campfire ban, designated campfires, and unregulated campfires—were assessed based on the number of fire sites and the amount of tree damage. Results indicate that unregulated campfire policies permitted substantial numbers of fire sites and tree damage in campsites, although fire bans did not eliminate or even substantially decrease these problems. A designated campfire policy was effective in decreasing number of fire sites, but little difference was found among policies regarding tree damage. Given the importance of campfires to visitor experiences, campfire prohibitions could be viewed as unnecessarily restrictive based on their limited success in preventing resource damage. Conclusions encourage protected-area managers to consider designated campfire policies and prohibitions on axes, hatchets, and saws to better meet resource protection and visitor experience mandates.  相似文献   
154.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   
155.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
156.
Land application of wastewater presents potential for ground water pollution if not properly managed. In situ breakthrough tests were conducted using potato (Solanum tuberosum L.)-processing wastewater and a Br tracer to characterize P leaching in seasonally frozen sandy outwash soils. In the first test, P and Br breakthrough were measured in a 7-m deep well following wastewater [2.94 mg L(-1) total P (TP); 280 mg L(-1) Br] application at the site that had 13.1 mg water-extractable P (WEP) kg(-1)and 94.4 mg Bray-1 P kg(-1). Bromide was detected in the well after approximately 0.4 pore volumes, but there was no P break-through after 7 pore volumes. In the second breakthrough test, wastewater containing 3.6 mg L(-1) TP and 259 mg L(-1) Br was applied on 1.5-m deep lysimeters at low (0.8 mg WEP kg(-1); 12.1 mg Bray-1 P kg(-1)) and high soil test P sites (104 mg WEP kg(-1); 585 mg Bray-1 P kg(-1)). Leachate TP concentration during the test remained constant (0.04 mg L(-1)) at the low P sites but increased from approximately 3.5 to 5.6 mg L(-1) at the high P sites. These results indicate no P leaching in low P soils, but leaching in high P soils, thus suggesting that most of the P leached at the high P sites was mainly due to desorption and dissolution of weakly adsorbed P from prior P applications. This was consistent with P transport simulations using the convective-dispersive equation. We conclude that P concentration in land-applied wastewater should be regulated based on soil test-P level plus wastewater P loading.  相似文献   
157.
Repeated application may increase rates of pesticide dissipation in soil and reduce persistence. The potential for this to occur was investigated for the fungicide, tebuconazole (alpha-[2-(4-chlorophenyl)ethyl]-alpha-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol), when used for peanut (Arachis hypogaea L.) production. Soil samples were collected from peanut plots after each of four tebuconazole applications at 2-wk intervals. Soil moisture was adjusted to field capacity as necessary and samples were incubated in the laboratory for 63 d at 30 degrees C. Untreated plot samples spiked with the compound served as controls. Results indicated accelerated dissipation in field-treated samples with the time to fifty percent dissipation (DT50) decreasing from 43 to 5 d after three tebuconazole applications. Corresponding increases in rates of accumulation and decay of degradates were also indicated. Best-fit equations (r2 = 0.84-0.98) to dissipation kinetic data combined with estimates of canopy interception rates were used to predict tebuconazole and degradates concentration in soil after each successive application. Predicted concentrations compared with values measured in surface soil samples were from twofold less to twofold greater. Use of kinetic data will likely enhance assessments of treatment efficacy and human and ecological risks from normal agronomic use of tebuconazole on peanut. However, the study indicated that varying soil conditions (in particular, soil temperature and water content) may have an equal or greater impact on field dissipation rate than development of accelerated dissipation. Results emphasize that extension of laboratory-derived kinetic data to field settings should be done with caution.  相似文献   
158.
Urban areas generate considerably more stormwater runoff than natural areas of the same size due to a greater percentage of impervious surfaces that impede water infiltration. Roof surfaces account for a large portion of this impervious cover. Establishing vegetation on rooftops, known as green roofs, is one method of recovering lost green space that can aid in mitigating stormwater runoff. Two studies were performed using several roof platforms to quantify the effects of various treatments on stormwater retention. The first study used three different roof surface treatments to quantify differences in stormwater retention of a standard commercial roof with gravel ballast, an extensive green roof system without vegetation, and a typical extensive green roof with vegetation. Overall, mean percent rainfall retention ranged from 48.7% (gravel) to 82.8% (vegetated). The second study tested the influence of roof slope (2 and 6.5%) and green roof media depth (2.5, 4.0, and 6.0 cm) on stormwater retention. For all combined rain events, platforms at 2% slope with a 4-cm media depth had the greatest mean retention, 87%, although the difference from the other treatments was minimal. The combination of reduced slope and deeper media clearly reduced the total quantity of runoff. For both studies, vegetated green roof systems not only reduced the amount of stormwater runoff, they also extended its duration over a period of time beyond the actual rain event.  相似文献   
159.
In the UK, the Environmental Quality Standard for manganese has recently been lowered to 30 microg/L (annual average), which is less than the UK Drinking Water Inspectorate's Maximum Permitted Concentration Value (50 microg/L). Current passive treatment systems for manganese removal operate as open-air gravel-bed filters, designed to maximize either influent light and/or dissolved oxygen. This requires large areas of land. A novel enhanced bioremediation treatment system for manganese removal has been developed that consists of a passively aerated subsurface gravel bed. The provision of air at depth and the use of catalytic substrates help overcome the slow kinetics usually associated with manganese oxidation. With a residence time of only 8 h and an influent manganese concentration of approximately 20 mg/L, >95% of the manganese was removed. The treatment system also operates successfully at temperatures as low as 4 degrees C and in total darkness. These observations have positive implications for manganese treatment using this technique in both colder climates and where large areas of land are unavailable. Furthermore, as the operation of this passive treatment system continually generates fresh manganese oxyhydroxide, which is a powerful sorbent for most pollutant metals, it potentially has major ancillary benefits as a removal process for other metals, such as zinc.  相似文献   
160.
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号