首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   1篇
  国内免费   2篇
安全科学   11篇
废物处理   22篇
环保管理   18篇
综合类   20篇
基础理论   28篇
污染及防治   118篇
评价与监测   12篇
社会与环境   6篇
灾害及防治   6篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   1篇
  2014年   4篇
  2013年   30篇
  2012年   13篇
  2011年   14篇
  2010年   15篇
  2009年   14篇
  2008年   17篇
  2007年   13篇
  2006年   14篇
  2005年   14篇
  2004年   13篇
  2003年   12篇
  2002年   9篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
101.
A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) models were developed for arsenic (As) in tilapia Oreochromis mossambicus from blackfoot disease area in Taiwan. The PBPK/PD model structure consisted of muscle, gill, gut wall, alimentary canal, and liver, which were interconnected by blood circulation. We integrate the target organ concentrations and dynamic response describing uptake, metabolism, and disposition of As and the associated area-under-curve (AUC)-based toxicological dynamics following an acute exposure. The model validations were compared against the field observations from real tilapia farms and previously published uptake/depuration experimental data, indicating that predicted and measured As concentrations in major organs of tilapia were in good agreement. The model was utilized to reasonably simulate and construct a dose-dependent dynamic response between mortality effect and equilibrium target organ concentrations. Model simulations suggest that tilapia gills may serve as a surrogate sensitive biomarker of short-term exposure to As. This integrated As PBPK/PD/AUC model quantitatively estimates target organ concentration and dynamic response in tilapia and is a strong framework for future waterborne metal model development and for refining a biologically-based risk assessment for exposure of aquatic species to waterborne metals under a variety of scenarios.  相似文献   
102.
Chiang HL  Tsai JH  Chang DH  Jeng FT 《Chemosphere》2000,41(8):1227-1232
Activated carbon kinetic studies show that both H2S and CH3SH yielded pore diffusion coefficients from 10(-6) to 10(-8) cm2/s. Results indicated that pore structures could influence effective diffusivity. Under the same adsorbate concentration, CH3SH exhibited a greater effective pore diffusion coefficient than H2S. This may be attributed to the fact that CH3SH has both polar (-SH) and non-polar (-CH3) functional groups and dissolves into water easier, thus providing more attraction for the activated carbon surface. In addition, the saturation vapor pressure of CH3SH is lower than that of H2S. Therefore, CH3SH is easier to adsorb onto activated carbon than H2S.  相似文献   
103.
In the present study, a series of activated carbons were prepared from agricultural waste corn cob by chemical and physical activations with potassium hydroxide (KOH)/potassium carbonate (K2CO3) and carbon dioxide (CO2). The effect of process variables such as impregnation ratio, impregnation time, activation temperature and soaking time of CO2 was studied in order to relate these preparation parameters with the physical properties of final carbon products. The resulting activated carbons were characterized by nitrogen adsorption-desorption isotherms at 77 K. The surface areas and pore volumes of carbons were estimated by the BET equation, the Langmuir equation and the t-plot method. Under the experimental conditions investigated, the main parameters in the activation of corn cob were found to be the impregnation ratio and activation temperature. The soaking time of CO2 is another important variable, which had a strong effect on the pore volume development. The BET surface area and total pore volume were as large as about 2000 m2/g and about 1.0 cm3/g, respectively. This study showed that the activation of agricultural waste corn cob with KOH/K2CO3 and CO2 was suitable for the preparation of large-surface-area activated carbons.  相似文献   
104.
The effects of arsenic (As2O3) on plasma osmolarity, Na and K concentrations, the activity of gill Na–K-ATPase, and on the ultrastructure of gill chloride cells were compared between seawater tilapia (Oreochromis mossambicus) and freshwater tilapia in the Institute of Zoology, Academia Sinica, between 1989 and 1991. Arsenic was found to be more lethal in seawater tilapia [96 h LC50 (median lethal concentration): 26.5 ppm] than in freshwater ones (71.7 ppm). No significant effect was found on plasma ion concentrations and osmolarity, enzyme activity or the ultrastructure of chloride cells in freshwater tilapia after 96 h exposure to 70 ppm arsenic. In contrast, 96 h exposure to 15 ppm arsenic caused evident effects in seawater tilapia: an increase in plasma osmolarity and activity of gill Na–K-ATPase, as well as better development of the chloride cell tubular system. These data suggest that the lethal effect of arsenic may be partially attributed to a hydromineral disturbance in seawater tilapia, but in freshwater tilapia arsenic perhaps causes destruction in some physiological mechanisms other than osmoregulation. The activation of gill Na–K-ATPase and chloride cells in seawater tilapia appears to indicate an adaptation in the osmoregulatory mechanism to arsenic exposure, i.e., to enhance secreting ions or arsenic in the gills.  相似文献   
105.
Mixed glass cullet (crushed recycled glass containers) is stockpiled uncovered before use as roadway construction aggregate or daily cover in landfills. Rainwater that leaches through the stockpiles dissolves and suspends contaminants such as those from food residuals and paper labels. The objective of this study was to determine leachate quantity and quality from cullet stockpiles as a basis for development of Best Management Practices (BMPs). Four 35-tonne field stockpiles were set up for leachate analysis and to determine the effects of mechanical turning treatment on the leachate. Field-collected leachate and laboratory-generated washwater of cullet (water:cullet = 3:1 by weight) were both analyzed for basic wastewater parameters, which showed pollutant levels comparable to or higher than those of untreated domestic wastewater or urban stormwater. While organic contamination decreased substantially (e.g., washwater BOD > 95% reduction), TKN and total-phosphorus levels in leachate ranged between 11.6–154 mg L?1 and 1.6–12.0 mg L?1, respectively, and remained comparable to levels found in untreated domestic wastewater after four months. Turning enhanced the degradation of the organic constituents inside the stockpiles, which was confirmed by elevated temperatures. Based on this study, leachate from glass cullet stockpiles should not be released to surface water. For leachate from long-term cullet stockpiles, release to groundwater should be only done after treatment to reduce nitrogen levels.  相似文献   
106.
107.
To solve the complicated problem of water-stage predictions under the interaction of upstream flows and tidal effects during typhoon attacks, this article presents a novel approach to river-stage predictions. The proposed CART-ANN model combines both the decision trees (classification and regression trees [CART]) and the artificial neural network (ANN) techniques, which comprise the multilayer perceptron (MLP) and radial basis function (RBFNN). The combined CART-ANN model involves a two-step predicting process. First, the CART stage-level classifier can classify the river stages into higher, middle, and lower levels. Then, the ANN-based water-stage predictors are employed to predict the water stages. The proposed model was applied to the Tanshui River Basin in Taiwan. The Taipei Bridge, which is close to the estuary and affected by tidal effects, was taken as the study gauge. The mean square error and the mean absolute error were used for evaluating the variance and bias performances of the models. This study makes two contributions. First, the CART-MLP and CART-RBF were modeled to predict river stages under tidal effects during typhoons, and they were compared with three benchmark models, CART, back-propagation neural network, and RBFNN. Second, the CART-RBF successfully demonstrated that it achieved more accurate prediction than CART-MLP and three benchmark models.  相似文献   
108.
Co-firing of coal and paper mill sludge was conducted in a 103 MWth circulating fluidized bed boiler to investigate the effect of the sludge feeding rate on emissions of SOx, NOx, and CO. The preliminary results show that emissions of SOx and Nx decrease with increasing sludge feeding rate, but CO shows the reverse tendency due to the decrease in combustion temperature caused by a large amount of moisture in the sludge. All emissions met the local environmental requirements. The combustion ashes could be recycled as feed materials in the cement manufacturing process.  相似文献   
109.
Huang JS  Tsai CC  Chou HH  Ting WH 《Chemosphere》2006,62(1):61-70
Nitrification-denitrification in a single-sludge nitrogen removal system (SSNRS; with a sufficient carbon source for denitrification) was performed. With an increase in the mixed liquor recycle ratio (R(m)) from 1 to 2, the total nitrogen (TN) removal efficiency at a lower volumetric loading rate (VLR=0.21 NH(4)(+)-N m(-3) d(-1)) increased, but the TN removal efficiency at a higher VLR (0.35 kg NH(4)(+)-N m(-3) d(-1)) decreased. A kinetic model that accounts for the mass fractions of Nitrosomonas, Nitrobacter, nitrate reducer and nitrite reducer (f(n1), f(n2), f(dn1), and f(dn2)) in the SSNRS and an experimental approach for the estimation of the mass fractions of nitrogen-related microbial groups are also proposed. The estimated f(dn1) plus f(dn2) (0.65-0.83) was significantly larger than the f(n1) plus f(n2) (0.28-0.32); the f(n1) (0.21-0.26) was larger than the f(n2) (0.05-0.07); and the f(dn1) (0.32-0.45) varied slightly with the f(dn2) (0.33-0.38). At the lower VLR, the f(dn1) plus f(dn2) increased with increasing R(m); however at the higher VLR, the f(dn1) plus f(dn2) did not increase with increasing R(m). By using the kinetic model, the calculated residual NH(4)(+)-N and NO(2)(-)-N in the anoxic reactor and NO(2)(-)-N and NO(3)(-)-N in the aerobic reactor were in fairly good agreement with the experimental data; the calculated NO(3)(-)-N in the anoxic reactor was over-estimated and the calculated NH(4)(+)-N in the aerobic reactor was under-estimated.  相似文献   
110.
Tsai WT  Chyan JM 《Chemosphere》2006,63(1):22-30
Taiwan is a densely populated and developed country with more than 97% of energy consumption supplied by imported fuels. Greenhouse gas emissions are thus becoming significant environmental issues in the country. Using the Intergovernmental Panel on Climate Change (IPCC) recommended methodologies, anthropogenic emissions of nitrous oxide (N2O) in Taiwan during 2000-2003 were estimated to be around 41 thousand metric tons annually. About 87% of N2O emissions come from agriculture, 7% from the energy sector, 3% from industrial processes sector, 3% from waste sector. On the basis of N2O emissions in 2000, projections for the year 2010 show that emissions were estimated to decline by about 6% mainly due to agricultural changes in response to the entry of WTO in 2002. In contrast to projections for the year 2020, N2O emissions were projected to grow by about 17%. This is based on the reasonable scenario that a new adipic acid/nitric acid plant will be probably started after 2010.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号