首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1661篇
  免费   19篇
  国内免费   63篇
安全科学   78篇
废物处理   156篇
环保管理   155篇
综合类   141篇
基础理论   268篇
环境理论   2篇
污染及防治   600篇
评价与监测   243篇
社会与环境   85篇
灾害及防治   15篇
  2023年   39篇
  2022年   210篇
  2021年   164篇
  2020年   50篇
  2019年   70篇
  2018年   88篇
  2017年   105篇
  2016年   106篇
  2015年   56篇
  2014年   73篇
  2013年   205篇
  2012年   82篇
  2011年   101篇
  2010年   64篇
  2009年   61篇
  2008年   42篇
  2007年   44篇
  2006年   31篇
  2005年   18篇
  2004年   24篇
  2003年   15篇
  2002年   12篇
  2001年   9篇
  2000年   8篇
  1999年   6篇
  1997年   2篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1989年   1篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   5篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   1篇
  1979年   5篇
  1977年   1篇
  1976年   3篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1959年   1篇
排序方式: 共有1743条查询结果,搜索用时 15 毫秒
101.
Aerosol optical depth (AOD), an indirect estimate of particulate matter using satellite observations, has shown great promise in improving estimates of PM2.5 (particulate matter with aerodynamic diameter less than or equal to 2.5 μm) surface. Currently, few studies have been conducted to explore the optimal way to apply AOD data to improve the model accuracy of PM2.5 in a real-time air quality system. We believe that two major aspects may be worthy of consideration in that area: 1) an approach that integrates satellite measurements with ground measurements in the estimates of pollutants and 2) identification of an optimal temporal scale to calculate the correlation of AOD and ground measurements. This paper is focused on the second aspect, identifying the optimal temporal scale to correlate AOD with PM2.5. Five following different temporal scales were chosen to evaluate their impact on the model performance: 1) within the last 3 days, 2) within the last 10 days, 3) within the last 30 days, 4) within the last 90 days, and 5) the time period with the highest correlation in a year. The model performance is evaluated for its accuracy, bias, and errors based on the following selected statistics: the Mean Bias, the Normalized Mean Bias, the Root Mean Square Error, Normalized Mean Error, and the Index of Agreement. This research shows that the model with the temporal scale: within the last 30 days, displays the best model performance in a southern multi-state area centered in Mississippi using 2004 and 2005 data sets.  相似文献   
102.
Long-term consumption of water containing excessive fluoride can lead to fluorosis of the teeth and bones. Electrocoagulation (EC) is an electrochemical technique, in which a variety of unwanted dissolved particles and suspended matter can be effectively removed from an aqueous solution by electrolysis. Continuous flow experiments with monopolar aluminium electrodes for fluoride removal were undertaken to investigate the effects of the different parameters such as: current density (12.5-50A/m(2)), flow rate (150-400 mL/min), initial pH (4-8), and initial fluoride concentration (5-25mg/L). The highest treatment efficiency was obtained for the largest current and the removal efficiency was found to be dependent on the current density, the flow rate and the initial fluoride concentration when the final pH ranged between 6 and 8. The composition of the sludge produced was analysed using the X-ray diffraction (XRD) spectrum. The strong presence of the aluminium hydroxide [Al(OH)(3)] in the above pH range, which maximizes the formation of aluminium fluoride hydroxide complex [Al(n)F(m)(OH)(3n-m)], is the main reason for defluoridation by electrocoagulation. The results obtained showed that the continuous flow electrocoagulation technology is an effective process for defluoridation of potable water supplies and could also be utilized for the defluoridation of industrial wastewater.  相似文献   
103.
A number of studies on the oxidation of various organic/inorganic contaminants by ferrate(VI) were reported in the 1980s and 1990s. The exploration of the use of ferrate(VI) for water and wastewater treatment has been well addressed recently. However, challenges have existed for the implementation of ferrate(VI) technology in practice due to the instability of a ferrate solution or high production cost of solid ferrate products. The research has been carried out aiming at the generation and application of ferrate(VI) in situ. This paper thus reviews ferrate chemistry and its overall performance as a water treatment chemical, discusses the factors affecting the ferrate yield efficiency using the electrochemical method, and finally, summarises the work on the production and use of ferrate in situ which is currently under study.  相似文献   
104.
This study addressed the hydrological processes of runoff and sedimentation, soil moisture content, and properties under the effect of different water harvesting techniques (treatments). The study was conducted at three sites, representing environmental condition gradients, located in the southern part of the West Bank. For each treatment, the study evaluated soil chemical and physical properties, soil moisture at 30 cm depth, surface runoff and sedimentation at each site. Results showed that runoff is reduced by 65–85% and sedimentation by 58–69% in stone terraces and semi-circle bunds compared to the control at the semi-humid site. In addition, stone terraces and contour ridges significantly reduced the amount of total runoff by 80% and 73%, respectively, at the arid site. Soil moisture content was significantly increased by water harvesting techniques compared to the control in all treatments at the three study sites. In addition, the difference between the control and the water harvesting structures were higher in the arid and semi-arid areas than in the semi-humid area. Soil and water conservation, via utilization of water harvesting structures, is an effective principle for reducing the negative impact of high runoff intensity and subsequently increasing soil moisture storage from rainfall. Jessour systems in the valley and stone terraces were effective in increasing soil moisture storage, prolonging the growing season for natural vegetation, and decreasing the amount of supplemental irrigation required for growing fruit trees.  相似文献   
105.
An innovative biodegradation test system was developed in order to fill the current gap for cost effective and environmentally relevant tools to assess marine biodegradability. Glass beads were colonized by a biofilm in an open flow-through system of seawater with continuous pre-exposure to Linear Alkylbenzene Sulfonate (LAS) (20 μg/L). Thereafter, such colonized beads were added as inoculum in different test systems. [14C]-LAS (5–100 μg/L) was added and primary and ultimate biodegradation were assessed. The bacterial density collected on the beads (109 bact./mL beads) was ca. 3 orders of magnitude higher than the typical seawater content. The LAS mineralization lag phase duration decreased from 55 to < 1 days and the mineralization extent increased from 53 to 90% as the colonized beads volume increased from 10 to 275 mL. This is the first demonstration of marine bacteria's ability to mineralize LAS. On the opposite, less than 13% LAS was mineralized in seawater only. The colonized beads possibly enhanced the probability to encounter the full degraders' consortium in a low volume of seawater (100 mL).  相似文献   
106.
Abstract: The hydrologic performance of DRAINMOD 5.1 was assessed for the southern Quebec region considering freezing/thawing conditions. A tile drained agricultural field in the Pike River watershed was instrumented to measure tile drainage volumes. The model was calibrated using water table depth and subsurface flow data over a two‐year period, while another two‐year dataset served to validate the model. DRAINMOD 5.1 accurately simulated the timing and magnitude of subsurface drainage events. The model also simulated the pattern of water table fluctuations with a good degree of accuracy. The R2 between the observed and simulated daily WTD for calibration was >0.78, and that for validation was 0.93. The corresponding coefficients of efficiency (E) were >0.74 and 0.31. The R2 and E values for calibration/validation of subsurface flow were 0.73/0.48 and 0.72/0.40, respectively. DRAINMOD simulated monthly subsurface flow quite accurately (E > 0.82 and R2 > 0.84). The model precisely simulated daily/monthly drain flow over the entire year, including the winter months. Thus DRAINMOD 5.1 performed well in simulating the hydrology of a cold region.  相似文献   
107.
Simple models for permeability and selectivity variations of the CO2/CH4 system in 6FDA-2,6-DAT membrane have been derived that include both temperature and pressure effects simultaneously in a single equation. The proposed models were used in MATLAB, for a membrane-based CO2-removal process design for natural gas sweetening. The effects of the following factors on design parameters were examined: feed temperature, feed pressure and permeate pressure. The effect of permeate pressure was found to be very significant in the optimization process. In order to reduce hydrocarbon losses to below 2%, a two-stage membrane process was modeled and simulated in MATLAB, and the extent of desired hydrocarbon recovery was shown to be crucial in the optimization process. It has also been shown that there exist minima for the total required area of the two-stage membrane-based process, and as the CO2 load increases in the feed, the position of these minima shift to higher values of methane loss.  相似文献   
108.
The current generation of Probabilistic Risk Analysis (PRA), particularly those for technical systems, does not include an explicit representation of the possible impacts of organization and management on the safety performance of equipment and personnel. There are a number of technical challenges in developing a predictive model of organizational safety performance. There is a need for a widely accepted and theoretically sound set of principles on which models of organizational influences could be developed and validated. As a result of a multidisciplinary effort, this paper explores the feasibility of developing such principles and proposes a set of principles for organizational safety risk analysis. Then, as a realization of the proposed modeling principles, a safety risk framework, named Socio-Technical Risk Analysis (SoTeRiA), is developed. SoTeRiA formally integrates the technical system risk models with the social (safety culture and safety climate) and structural (safety practices) aspects of safety prediction models, and provides a theoretical basis for the integration. A systematic view of safety culture and safety climate leaves an important gap in modeling complex system safety risk, and SoTeRiA, describing the relationship between these two concepts, bridges this gap. The framework explicitly recognizes the relationship among constructs at multiple levels of analysis, and extends the PRA framework to include the effects of organizational factors in a more comprehensive and defensible way.  相似文献   
109.
In the present paper, the optimum design of a PV system used to operate a water pumping system was determined for Oman. The system design focused on the environmental conditions of Sohar city. The implementation and measurement of the designed system are presented to prove the effectiveness of the proposed system. The results show that the system can provide the required power at peak hours, leading to a substantial reduction in the sizing of the PV system. Consequently, the investment capital costs 2400 USD, and the cost of energy is equal to 0.309 USD/kWh. Furthermore, the results indicate that the system annual yield factor is 2024.66 kWh/kWp and that the capacity factor is 23.05 %, which is encouraging since the latter is typically 21 %. The system capital cost and the cost of energy are worth comparing to a diesel generator. A comparison is made between the proposed system and several others in the literature. The comparison indicated that the system cost of energy is promising.  相似文献   
110.
The building sector has been regarded as a potential sector where there is large capacity to reduce the climate change effect. This study has proposed solutions to mitigate environmental impacts and achieve low CO2 emission from residential sector. Therefore, full life cycle assessment (LCA) has been run to assess the CO2 emission and its effect on the atmosphere and climate change. Based on the result, timber scheme is the best choice due to releasing less CO2 emissions to the atmosphere. However, house builders in Malaysia have almost completely neglected timber as a building material, with timber use as building components reduced to 5%. In this study, LCA Software was used to assess CO2 emissions from different wall construction. The alternative building scheme has been made by reinforce steel stud, wooden beam and timber wall (S8) to improve the scheme deficiency while releasing less CO2 emissions compared to other schemes. Therefore, S8 has a decreased CO2 effect by 85% less than precast concrete frame and 90% less than brick over their lifetime. (S8) increased the load bearing compared to conventional timber beam. Thus, new scheme S8 could be replaced by current scheme and promote more adjustable scheme for Malaysian housing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号