首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   3篇
  国内免费   4篇
安全科学   5篇
废物处理   10篇
环保管理   43篇
综合类   24篇
基础理论   38篇
环境理论   2篇
污染及防治   59篇
评价与监测   14篇
社会与环境   5篇
灾害及防治   4篇
  2023年   1篇
  2022年   8篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   5篇
  2017年   6篇
  2016年   10篇
  2015年   5篇
  2014年   9篇
  2013年   30篇
  2012年   10篇
  2011年   10篇
  2010年   2篇
  2009年   9篇
  2008年   11篇
  2007年   7篇
  2006年   14篇
  2005年   6篇
  2004年   4篇
  2003年   11篇
  2002年   3篇
  2001年   5篇
  2000年   6篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有204条查询结果,搜索用时 0 毫秒
91.
The virucidal efficacy of a pulsed light treatment applied to viral suspensions, glass beads and herb powders was studied for the F-RNA bacteriophage MS2. The experimental results obtained demonstrated the high potential of this technology to efficiently decontaminate simple matrices but underlined the complexity of application to complex food matrices.  相似文献   
92.
The herbicide 2,4-D is often applied as a tank mixture in combination with other herbicide products. However, current information on 2,4-D sorption by soil is largely based on batch-equilibrium experiments without considering the competition of other herbicides for sorption sites by soil. This study quantified the effect of the herbicide propanil on the sorption of 2,4-D in soil. Results indicated that propanil competed with 2,4-D for sorption sites, particularly in soils with an organic carbon content greater than 3.6%. The decrease in 2,4-D sorption by soil, as a result of propanil competition, was most notably for herbicide concentrations that are typical of recommended field rates. We conclude that herbicide co-applications on agricultural fields have the potential to increase the mobility of herbicides in soil.  相似文献   
93.
Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements.In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of atmospheric services but also to newly open scientific questions.  相似文献   
94.
Although the development community has long recognised that securing land tenure and improving housing design can benefit significantly informal settlement residents, there is little research on these issues in communities exposed to natural disasters and hazards. Informal settlements often are located on land left vacant because of inherent risks, such as floodplains, and there is a long history worldwide of disasters affecting informal settlements. This research tackles the following questions: how can informal settlement vulnerabilities be reduced in a post‐disaster setting?; and what are the key issues to address in post‐disaster reconstruction? The main purpose of the paper is to develop a set of initial guidelines for post‐disaster risk reduction in informal settlements, stressing connections to tenure and housing/community design in the reconstruction process. The paper examines disaster and reconstruction responses in two disaster‐affected regions—Jimani, Dominican Republic, and Vargas State, Venezuela—where informal settlements have been hit particularly hard.  相似文献   
95.
Surendran Nair, Sujithkumar, Kevin W. King, Jonathan D. Witter, Brent L. Sohngen, and Norman R. Fausey, 2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of the American Water Resources Association (JAWRA) 47(6):1285–1297. DOI: 10.1111/j.1752‐1688.2011.00570.x Abstract: Watershed‐scale water‐quality simulation tools provide a convenient and economical means to evaluate the environmental impacts of conservation practices. However, confidence in the simulation tool’s ability to accurately represent and capture the inherent variability of a watershed is dependent upon high quality input data and subsequent calibration. A four‐stage iterative and rigorous calibration procedure is outlined and demonstrated for Soil Water Analysis Tool (SWAT) using data from Upper Big Walnut Creek (UBWC) watershed in central Ohio, USA. The four stages and the sequence of their application were: (1) parameter selection, (2) hydrology calibration, (3) crop yield calibration, and (4) nutrient loading calibration. Following the calibration, validation was completed on a 10 year period. Nash‐Sutcliffe efficiencies for streamflow over the validation period were 0.5 for daily, 0.86 for monthly, and 0.87 for annual. Prediction efficiencies for crop yields during the validation period were 0.69 for corn, 0.54 for soybeans, and 0.61 for wheat. Nitrogen loading prediction efficiency was 0.66. Compared to traditional calibration approaches (no crop yield calibration), the four‐stage approach (with crop yield calibration) produced improved prediction efficiencies, especially for nutrient balances.  相似文献   
96.
A method utilizing size exclusion liquid chromatography (SEC) was developed to separate and quantify large molecular cobalt (Co) (e.g., albumin-Co) from cyanocobalamin (vitamin B12) and small molecular Co (e.g., glutathione-Co and free Co) in human serum. Highly selective and sensitive detection using inductively coupled plasma–mass spectrometry was coupled with SEC to provide a method with reliable accuracy, precision, recoveries, stability, and a detection limit of 0.037 μg/L in undiluted serum. Other divalent metal cations known to compete with Co(II) for serum albumin-binding sites (such as iron, zinc, manganese, cadmium, copper, nickel, and lead) did not significantly alter Co(II) quantification. Co–protein binding capacity determination of individual serum samples indicated that addition of 2500 μg Co/L to undiluted human serum resulted in approximately 90% distribution to the large molecular Co peak, consistent with Co binding to high-affinity divalent metal binding sites on albumin. Since serum albumin binding partially sequesters biologically active Co(II) ions, this method provides an important tool for better understanding the kinetics and toxicology of Co compounds. Thus, the proposed method might play an important role in establishing Co dose–response relationships that affect the equilibrium concentrations of free ionic Co(II).  相似文献   
97.
The semiarid, northern Mongolian steppe, which still supports pastoral nomads who have used the steppe for millennia, has experienced an average 1.7 degrees C temperature rise over the past 40 years. Continuing climate change is likely to affect flowering phenology and flower numbers with potentially important consequences for plant community composition, ecosystem services, and herder livelihoods. Over the growing seasons of 2009 and 2010, we examined flowering responses to climate manipulation using open-top passive warming chambers (OTCs) at two locations on a south-facing slope: one on the moister, cooler lower slope and the other on the drier, warmer upper slope, where a watering treatment was added in a factorial design with warming. Canonical analysis of principal coordinates (CAP) revealed that OTCs reduced flower production and delayed peak flowering in graminoids as a whole but only affected forbs on the upper slope, where peak flowering was also delayed. OTCs affected flowering phenology in seven of eight species, which were examined individually, either by altering the time of peak flowering and/or the onset and/or cessation of flowering, as revealed by survival analysis. In 2010, which was the drier year, OTCs reduced flower production in two grasses but increased production in an annual forb found only on the upper slope. The particular effects of OTCs on phenology, and whether they caused an extension or contraction of the flowering season, differed among species, and often depended on year, or slope, or watering treatment; however, a relatively strong pattern emerged for 2010 when four species showed a contraction of the flowering season in OTCs. Watering increased flower production in two species in 2010, but slope location more often affected flowering phenology than did watering. Our results show the importance of taking landscape-scale variation into account in climate change studies and also contrasted with those of several studies set in cold, but wetter systems, where warming often causes greater or accelerated flower production. In cold, water-limited systems like the Mongolian steppe, warming may reduce flower numbers or the length of the flowering season by adding to water stress more than it relieves cold stress.  相似文献   
98.
Identity management refers to the decisions individuals make about how they present their social identities to others. We examined cross‐cultural differences in distancing and affirming identity management strategies of Christian‐identified employees utilizing samples from the USA and South Korea. Religious centrality, risks of disclosure, pressure to assimilate to organizational norms, and nation were key antecedents of chosen identity management strategies. Risks of disclosure and pressure to assimilate related to more distancing and less affirming strategies when religious centrality was low, but nation served as a boundary condition for the moderating effects of religious centrality. Distancing strategies related to negative outcomes regardless of religious centrality, but affirming strategies only related to positive outcomes when religious centrality was low. We discuss how this work contributes to theoretical and practical understanding of identity management in the workplace and across cultures. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
100.
The effect of the floods caused by "El Niño" on health   总被引:1,自引:0,他引:1  
M. Gueri  C. González  V. Morin 《Disasters》1986,10(2):118-124
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号