首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   1篇
  国内免费   19篇
安全科学   30篇
废物处理   10篇
环保管理   12篇
综合类   33篇
基础理论   20篇
污染及防治   49篇
评价与监测   16篇
社会与环境   12篇
灾害及防治   2篇
  2023年   3篇
  2022年   9篇
  2021年   6篇
  2020年   1篇
  2019年   7篇
  2018年   2篇
  2017年   4篇
  2016年   12篇
  2015年   10篇
  2014年   5篇
  2013年   13篇
  2012年   10篇
  2011年   4篇
  2010年   10篇
  2009年   14篇
  2008年   10篇
  2007年   6篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   10篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
31.

Climate change issues are calling for advanced methods to produce materials and fuels in a carbon–neutral and circular way. For instance, biomass pyrolysis has been intensely investigated during the last years. Here we review the pyrolysis of algal and lignocellulosic biomass with focus on pyrolysis products and mechanisms, oil upgrading, combining pyrolysis and anaerobic digestion, economy, and life cycle assessment. Products include oil, gas, and biochar. Upgrading techniques comprise hot vapor filtration, solvent addition, emulsification, esterification and transesterification, hydrotreatment, steam reforming, and the use of supercritical fluids. We examined the economic viability in terms of profitability, internal rate of return, return on investment, carbon removal service, product pricing, and net present value. We also reviewed 20 recent studies of life cycle assessment. We found that the pyrolysis method highly influenced product yield, ranging from 9.07 to 40.59% for oil, from 10.1 to 41.25% for biochar, and from 11.93 to 28.16% for syngas. Feedstock type, pyrolytic temperature, heating rate, and reaction retention time were the main factors controlling the distribution of pyrolysis products. Pyrolysis mechanisms include bond breaking, cracking, polymerization and re-polymerization, and fragmentation. Biochar from residual forestry could sequester 2.74 tons of carbon dioxide equivalent per ton biochar when applied to the soil and has thus the potential to remove 0.2–2.75 gigatons of atmospheric carbon dioxide annually. The generation of biochar and bio-oil from the pyrolysis process is estimated to be economically feasible.

  相似文献   
32.
33.
Genetic structure was studied in Platygyra sinensis from six sites in Hong Kong by allozyme electrophoresis using an isoelectric focusing gel (IEF). Seven variable loci were detected using six enzyme systems. The number of alleles per locus ranged from 3.3 to 3.6 in the six samples, and heterozygosity from 0.429 to 0.540. Genotype frequencies were generally close to Hardy–Weinberg expectations. The values of unique multilocus genotype to the number of individuals for each sample (NG/N) and observed genotypic diversity to expected genotypic diversity (GO/GE) were high, indicating a high level of sexual reproduction. Variation in allele frequencies among sites was low (FST=0.017), as was Nei's unbiased genetic distance (D), suggesting genetic similarity among sites.Communicated by T. Ikeda, Hakodate  相似文献   
34.
• 23 available research articles on MPs in drinking water treatment are reviewed. • The effects of treatment conditions and MP properties on MP removal are discussed. • DWTPs with more steps generally are more effective in removing MPs. • Smaller MPs (e.g.,<10 μm) are more challenging in drinking water treatment. Microplastics (MPs) have been widely detected in drinking water sources and tap water, raising the concern of the effectiveness of drinking water treatment plants (DWTPs) in protecting the public from exposure to MPs through drinking water. We collected and analyzed the available research articles up to August 2021 on MPs in drinking water treatment (DWT), including laboratory- and full-scale studies. This article summarizes the major MP compositions (materials, sizes, shapes, and concentrations) in drinking water sources, and critically reviews the removal efficiency and impacts of MPs in various drinking water treatment processes. The discussed drinking water treatment processes include coagulation-flocculation (CF), membrane filtration, sand filtration, and granular activated carbon (GAC) filtration. Current DWT processes that are purposed for particle removal are generally effective in reducing MPs in water. Various influential factors to MP removal are discussed, such as coagulant type and dose, MP material, shape and size, and water quality. It is anticipated that better MP removal can be achieved by optimizing the treatment conditions. Moreover, the article framed the major challenges and future research directions on MPs and nanoplastics (NPs) in DWT.  相似文献   
35.
海南鹦哥岭的外来植物与生态环境影响评价   总被引:5,自引:0,他引:5  
通过对鹦哥岭外来植物的调查,以及外来植物区系的种类组成、原产地、生长型、生境和危害程度等的分析,阐明鹦哥岭的外来植物现状及其对当地生态环境的影响。分析表明:共有53种外来植物,约占鹦哥岭种子植物总数的2.73%,主要来自新大陆热带地区(35种)。其中草本(36种)和灌木(13种)占优势,藤本(3种)和小乔木(2种)相对不明显。外来种对鹦哥岭自然生态系统的影响较小,对人为干扰严重的生态系统影响较大。最后对外来植物进行评估,并提出防控措施。  相似文献   
36.
Novel 3D biogenic C-doped Bi_2 MoO_6/In_2O_3-ZnO Z-scheme heterojunctions were synthesized for the first time, using cotton fiber as template. The as-prepared samples showed excellent adsorption and photodegradation performance toward the hazardous antibiotic doxycycline under simulated sunlight irradiation. The morphology, phase composition and in situ carbon doping could be precisely controlled by adjusting processing parameters. The carbon doping in Bi_2 MoO_6/In_2O_3-ZnO was derived from the cotton template, and the carbon content could be varied in the range 0.9–4.4 wt.% via controlling the heat treatment temperature. The sample with Bi_2 MoO_6/In_2O_3-ZnO molar ratio of 1:2 and carbon content of1.1 wt.% exhibited the highest photocatalytic activity toward doxycycline degradation,which was 3.6 and 4.3 times higher than those of pure Bi_2 MoO_6 and Zn In Al-CLDH(calcined layered double hydroxides), respectively. It is believed that the Z-scheme heterojunction with C-doping, the 3D hierarchically micro–meso–macro porous structure, as well as the high adsorption capacity, contributed significantly to the enhanced photocatalytic activity.  相似文献   
37.
38.
This research was part of a study of filamentous growth and control in an ultracompact biofilm reactor (UCBR). Morphologies of biofilm and filamentous bacteria in the UCBR were investigated. Ethanol was used as a substrate and sodium hypochlorite was applied as a toxicant to control filamentous growth. The results indicated that factors such as chemical oxygen demand, surface loading rate, pH, and dissolved oxygen could initiate filamentous overgrowth in the UCBR. Different biofilm and filamentous morphologies in the UCBR were observed under different operational conditions. Chlorination was an effective approach to control filamentous growth during and after biofilm formation. Proper chlorine dosing had no effect on biofilm, but killed filaments. Overdose of chlorine damaged biofilm and caused adverse effects such as low treatment efficiency, media clogging and washout, and biofilm color change in the reactor. Frequent monitoring of the morphologies of filaments and biofilm was needed during chlorination to prevent chlorine overdose.  相似文献   
39.
Hu JY  Song LF  Ong SL  Phua ET  Ng WJ 《Chemosphere》2005,59(1):127-133
Biofouling control is considered as a major challenge in operating membrane systems. A lab-scale RO system was setup at a local water reclamation plant to study the feasibility of using biofiltration as a pretreatment process to control the biofouling. The biological activity in the RO system (feed, product, reject streams) was tested using the standard serial dilution plating technique. Operational parameters such as differential pressure (DP) and permeate flowrate of the system were also monitored. Effects of biofilter on AOC and DOC removals were investigated. Biofiltration was found to be a viable way of assimilable organic carbon (AOC) and dissolved organic carbon (DOC) removals, with removal efficiencies of 40-49% and 35-45% at an empty bed contact time (EBCT) of 30 min. It was also found that using the biofiltration as a pretreatment reduced the rate of biofouling. It took only about 72 h for biofouling to have a significant impact on the performance of the RO membrane, when the system was operated without using biofiltration as pretreatment. There was, however, a five times increase in operational length to more than 300 h when biofiltration was used. This study presented the suitability of the biofilter as an economical and simple way of biofouling control for RO membrane.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号