首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   12篇
  国内免费   14篇
安全科学   9篇
废物处理   5篇
环保管理   91篇
综合类   113篇
基础理论   129篇
环境理论   2篇
污染及防治   80篇
评价与监测   28篇
社会与环境   19篇
灾害及防治   4篇
  2023年   9篇
  2022年   10篇
  2021年   13篇
  2020年   5篇
  2019年   8篇
  2018年   19篇
  2017年   17篇
  2016年   18篇
  2015年   22篇
  2014年   20篇
  2013年   29篇
  2012年   22篇
  2011年   28篇
  2010年   26篇
  2009年   19篇
  2008年   38篇
  2007年   31篇
  2006年   20篇
  2005年   16篇
  2004年   15篇
  2003年   8篇
  2002年   9篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   8篇
  1997年   3篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
  1941年   1篇
排序方式: 共有480条查询结果,搜索用时 250 毫秒
401.
A post-rehabilitation audit of the derelict Conrad base metal mine, eastern Australia, indicates ongoing environmental hazard regarding acid mine drainage and concentrations of arsenic and lead to 3 wt% in the soil and sediment. In order to rehabilitate remote contaminated sites effectively, on-site analyses should be carried out to ensure that the materials used to rehabilitate the site are not contaminant-bearing. Understanding the geomorphic setting of the rehabilitated areas is also important in understanding where, and for what period, contaminated materials might be stored in fluvial systems downstream of mine workings. Chemical and geomorphic audits should form a fundamental part of all rehabilitation works to ensure favourable environmental outcomes.  相似文献   
402.
403.
404.
Urban ecosystems are increasingly influenced by residential yard care decisions. This had led researchers to focus on homeowner education programs when it comes to yard care. Typically, the success of programs designed to influence yard care is based on whether the target subject changes his or her behavior in a more environmentally conscious manner. This threshold, however, fails to consider if individuals share this information with their friends and neighbors, thus having a possible spillover effect. In this paper, we focus on the transmission of new lawn management information among neighbors and consider (1) if individuals discuss information they learned in a short-term educational program, (2) what factors are associated with diffusion, (3) what information individuals share, and (4) what barriers to transmission exist. In the Minneapolis–St. Paul metropolitan area, we used data from a mailed survey, group discussions, and mailed information exchanges. Results indicate that best management practices for yards can diffuse through the neighborhood (approximately 34 % shared information with their neighbors in a one-month period). In addition, factors such as (1) attending a group discussion, 2) individual social connectedness, (3) length of home ownership, and (4) the presence of children in the household were found to be positively related to increased sharing of information. Also, for lawns, the content of information shared tended to be about increasing grass height and reducing fertilizer applications. Finally, we find barriers to sharing ideas based on spatial, temporal, or perception factors but overcoming some of these barriers is possible.  相似文献   
405.
406.
Controlling the spread of invasive species, pests, and pathogens is often logistically limited to interventions that target specific locations at specific periods. However, in complex, highly connected systems, such as marine environments connected by ocean currents, populations spread dynamically in both space and time via transient connectivity links. This results in nondeterministic future distributions of species in which local populations emerge dynamically and concurrently over a large area. The challenge, therefore, is to choose intervention locations that will maximize the effectiveness of the control efforts. We propose a novel method to manage dynamic species invasions and outbreaks that identifies the intervention locations most likely to curtail population expansion by selectively targeting local populations most likely to expand their future range. Critically, at any point during the development of the invasion or outbreak, the method identifies the local intervention that maximizes the long‐term benefit across the ecosystem by restricting species’ potential to spread. In so doing, the method adaptively selects the intervention targets under dynamically changing circumstances. To illustrate the effectiveness of the method we applied it to controlling the spread of crown‐of‐thorns starfish (Acanthaster sp.) outbreaks across Australia's Great Barrier Reef. Application of our method resulted in an 18‐fold relative improvement in management outcomes compared with a random targeting of reefs in putative starfish control scenarios. Although we focused on applying the method to reducing the spread of an unwanted species, it can also be used to facilitate the spread of desirable species through connectivity networks. For example, the method could be used to select those fragments of habitat most likely to rebuild a population if they were sufficiently well protected.  相似文献   
407.
408.
409.
Increasingly, total maximum daily load (TMDL) limits are being defined for agricultural watersheds. Reductions in non-point source pollution are often needed to meet TMDL limits, and improvements in management of annual crops appear insufficient to achieve the necessary reductions. Increased adoption of perennial crops and other changes in agricultural land use also appear necessary, but face major barriers. We outline a novel strategy that aims to create new economic opportunities for land-owners and other stakeholders and thereby to attract their voluntary participation in land-use change needed to meet TMDLs. Our strategy has two key elements. First, focused efforts are needed to create new economic enterprises that capitalize on the productive potential of multifunctional agriculture (MFA). MFA seeks to produce a wide range of goods and ecosystem services by well-designed deployment of annual and perennial crops across agricultural landscapes and watersheds; new revenue from MFA may substantially finance land-use change needed to meet TMDLs. Second, efforts to capitalize on MFA should use a novel methodology, the Communicative/Systemic Approach (C/SA). C/SA uses an integrative GIS-based spatial modeling framework for systematically assessing tradeoffs and synergies in design and evaluation of multifunctional agricultural landscapes, closely linked to deliberation and design processes by which multiple stakeholders can collaboratively create appropriate and acceptable MFA landscape designs. We anticipate that application of C/SA will strongly accelerate TMDL implementation, by aligning the interests of multiple stakeholders whose active support is needed to change agricultural land use and thereby meet TMDL goals.  相似文献   
410.
Mountain pine beetles, Dendroctonus ponderosae (Hopkins) attack and can ultimately kill individuals and groups of pine trees, specifically lodgepole pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.). In British Columbia, beetle attack has increased from 164 000 ha in 1999 to over 13 million ha in 2008. Mitigation efforts can play a key role in addressing the impact beetle infestations can have on the forested landscape. In this research, the impact of mitigation on a mountain pine beetle infestation is examined within a network of 28 research plots where sanitation harvesting was completed (10 mitigated plots) and not completed (18 unmitigated plots). Three forest stand level modelling scenarios which predict the number of attacked trees, based on current infestation within the plots, were utilized to compare the differences between mitigated and non-mitigated plots. In the first scenario in the non-mitigated plots, 125 trees were infested after 10 years, while in the mitigated plots no trees were infested in the same time period. The second scenario indicates the level of mitigation required to suppress beetle infestations where the proportion of mitigated trees was calculated for each plot by counting the residual attack and the number of mitigated trees. The average mitigation rate over all plots of 43% (range 0–100%) is not sufficient to provide control. In the non-mitigated plots, the average population expansion rate was 5 (range of 0–18) which requires a detection accuracy of 74% to reliably detect infestation. The third scenario estimated the length of time required for ongoing detection, monitoring, and mitigation to bring an infestation under control. If mitigation efforts were maintained at the current rate of 43%, the beetle population would not be adequately controlled. However, when aided by continued detection and monitoring of attacked trees, mitigation rates greater than 50% are sufficient to control infestations, especially with persistent implementation, aided by continued detection and monitoring of infested trees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号