首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89127篇
  免费   1226篇
  国内免费   1101篇
安全科学   3744篇
废物处理   3188篇
环保管理   13800篇
综合类   21046篇
基础理论   26135篇
环境理论   72篇
污染及防治   13953篇
评价与监测   5380篇
社会与环境   3593篇
灾害及防治   543篇
  2022年   793篇
  2021年   793篇
  2020年   642篇
  2019年   855篇
  2018年   1110篇
  2017年   1160篇
  2016年   2136篇
  2015年   1819篇
  2014年   2566篇
  2013年   9226篇
  2012年   2149篇
  2011年   2350篇
  2010年   3228篇
  2009年   3391篇
  2008年   1894篇
  2007年   1739篇
  2006年   2196篇
  2005年   2180篇
  2004年   2474篇
  2003年   2333篇
  2002年   1867篇
  2001年   2095篇
  2000年   1898篇
  1999年   1475篇
  1998年   1359篇
  1997年   1350篇
  1996年   1472篇
  1995年   1565篇
  1994年   1458篇
  1993年   1311篇
  1992年   1309篇
  1991年   1276篇
  1990年   1231篇
  1989年   1198篇
  1988年   1034篇
  1987年   965篇
  1986年   990篇
  1985年   1061篇
  1984年   1153篇
  1983年   1175篇
  1982年   1176篇
  1981年   1096篇
  1980年   941篇
  1979年   929篇
  1978年   817篇
  1977年   720篇
  1976年   638篇
  1975年   610篇
  1973年   638篇
  1972年   651篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
901.
Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.  相似文献   
902.
Gas cleaning systems of MSW (Municipal Solid Waste) incinerators are characterised by the process employed to remove acid gases. The commonly used technologies for acid gas removal are: (1) dry treatment with Ca(OH)2 or (2) with NaHCO3, (3) semi-dry process with Ca(OH)2 and (4) wet scrubbing. In some recent plants beside a wet cleaning system, a dry neutralization with Ca(OH)2 is used. The goal is to reduce the amount of acid to be removed in the wet treatment and the liquid effluents produced. The influence of these different technologies on the electrical efficiency was investigated by a detailed simulation of a WTE (Waste To Energy) plant with a capacity of about 100,000 t/y of MSW. The effects of the different gas cleaning systems on electrical efficiency were significant. The difference of efficiency between the most advantageous technology, which is dry treatment with NaHCO3, and the least advantageous technology which is semi-dry treatment, is about 0.8%. A simple economic analysis showed that the few advantages of dry technologies can often be lost if the costs of chemicals and the disposal of products are considered.  相似文献   
903.
The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components – a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes. The models available to date include predefined solid waste biodegradation reactions and participating species. Some of these models allow changing the basic composition of solid waste. In a bioreactor landfill several processes like anaerobic and aerobic solids biodegradation, nitrogen and sulfate related processes, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to simulate these processes by choice. This paper presents the development of a generalized biochemical process model BIOKEMOD-3P which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill operation in a completely mixed condition, when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations in order to determine biochemical parameters important for simulation of full-scale operations.  相似文献   
904.
Sludge from a slaughter-house wastewater plant, and mixtures of bulking agent (crushed wood pallet) and sludge were studied by Nuclear Magnetic Resonance (NMR). The NMR spin–spin relaxation (T2) and spin–lattice relaxation (T1) signals for sludge, wet crushed wood pallet and mixtures of sludge and bulking agent were decomposed into three relaxation time components. Each relaxation time component was explained by a non-homogeneous water distribution on a microscopic length scale and by the porosity of the material. For all samples, the T2 relaxation time value of each component was directly related to the dry matter content. The addition of wet crushed wood to sludge induced a decrease in the relaxation time, explained by water transfer between the sludge and the wood.Magnetic Resonance Imaging (MRI) and respirometric measurements were performed on sludge and wood mixtures. MR images of the mixtures were successfully obtained at different biodegradation states. Based on specific NMR measurements in an identified area located in the MRI cells, the results showed that grey levels of MR images reflected dry matter content. This preliminary study showed that MRI would be a powerful tool to measure water distribution in sludge and bulking agent mixtures and highlights the potential of this technique to increase the understanding of sludge composting.  相似文献   
905.
Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO2-eq. can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83–95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the “Avoidance of landfill gas emissions by in situ aeration of landfills” (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.  相似文献   
906.
This paper investigates the effects of accelerated carbonation on the characteristics of bottom ash from refuse derived fuel (RDF) incineration, in terms of CO2 uptake, heavy metal leaching and mineralogy of different particle size fractions. Accelerated aqueous carbonation batch experiments were performed to assess the influence of operating parameters (temperature, CO2 pressure and L/S ratio) on reaction kinetics. Pressure was found to be the most relevant parameter affecting the carbonation yield. This was also found to be largely dependent on the specific BA fraction treated, with CO2 uptakes ranging from ~4% for the coarse fractions to ~14% for the finest one. Carbonation affected both the mineralogical characteristics of bottom ash, with the appearance of neo-formation minerals, and the leaching behaviour of the material, which was found to be mainly related to the change upon carbonation in the natural pH of the ash.  相似文献   
907.
Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO2 accounts showed significantly different results: waste incineration in one network caused a CO2 saving of 48 kg CO2/GJ energy input while in the other network a load of 43 kg CO2/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.  相似文献   
908.
This paper investigates the changes of mineralogical composition of bottom ash in the environment. The chemical and mineralogical bulk composition was determined by X-ray fluorescence (XRF) and X-ray powder diffraction (XRPD) Rietveld method. Single bottom ash particles were investigated by optical microscopy, scanning electron microscopy with quantitative energy-dispersive X-ray microanalysis (SEM/EDX) and electron probe micro analysis (EPMA). SEM/EDX and EPMA are valuable complement to bulk analysis and provide means for rapid and sensitive multi-elemental analysis of ash particles. The fresh bottom ash consists of amorphous (>30 wt.%) and major crystalline phases (>1 wt.%) such as silicates, oxides and carbonates. The mineral assemblage of the fresh bottom ash is clearly unstable and an aging process occurs by reaction towards an equilibrium mineral phase composition in the environmental conditions. The significant decrease of anhydrite and amorphous contents was observed in the aged bottom ash, leading to the formation of ettringite, hydrocalumite and rosenhahnite under atmospheric conditions. In the water-treated sample, the calcite contents increased significantly, but ettringite was altered by the dissolution and precipitation processes in part, to produce gypsum, while the remaining part reacted with chloride to form hydrocalumite. Gypsum and other Ca based minerals may take up substantial amounts of heavy metals and subsequently control leaching behaviour of bottom ash.  相似文献   
909.
Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号