首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   2篇
安全科学   3篇
废物处理   3篇
环保管理   24篇
综合类   34篇
基础理论   20篇
污染及防治   12篇
评价与监测   26篇
社会与环境   3篇
灾害及防治   3篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   2篇
  2011年   6篇
  2010年   11篇
  2009年   6篇
  2007年   7篇
  2006年   5篇
  2005年   8篇
  2004年   9篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有128条查询结果,搜索用时 593 毫秒
121.
Mean annual concentration of ${\textrm{SO}}_{4}^{2-}$ in wet-only deposition has decreased between 1988 and 2006 at the paired watershed study at Bear Brook Watershed in Maine, USA (BBWM) due to substantially decreased emissions of SO2. Emissions of NOx have not changed substantially, but deposition has declined slightly at BBWM. Base cations, ${\textrm{NH}}_{4}^{+}$ , and Cl??? concentrations were largely unchanged, with small irregular changes of <1 μeq L???1 per year from 1988 to 2006. Precipitation chemistry, hydrology, vegetation, and temperature drive seasonal stream chemistry. Low flow periods were typical in June–October, with relatively greater contributions of deeper flow solutions with higher pH; higher concentrations of acid-neutralizing capacity, Si, and non-marine Na; and low concentrations of inorganic Al. High flow periods during November–May were typically dominated by solutions following shallow flow paths, which were characterized by lower pH and higher Al and DOC concentrations. Biological activity strongly controlled ${\textrm{NO}}_{3}^{-}$ and K?+?. They were depressed during the growing season and elevated in the fall. Since 1987, East Bear Brook (EB), the reference stream, has been slowly responding to reduced but still elevated acid deposition. Calcium and Mg have declined fairly steadily and faster than ${\textrm{SO}}_{4}^{2-}$ , with consequent acidification (lower pH and higher inorganic Al). Eighteen years of experimental treatment with (NH4)2SO4 enhanced acidification of West Bear Brook’s (WB) watershed. Despite the manipulation, ${\textrm{NH}}_{4}^{+}$ concentration remained below detection limits at WB, while leaching of ${\textrm{NO}}_{3}^{-}$ increased. The seasonal pattern for ${\textrm{NO}}_{3}^{-}$ concentrations in WB, however, remained similar to EB. Mean monthly concentrations of ${\textrm{SO}}_{4}^{2-}$ have increased in WB since 1989, initially only during periods of high flow, but gradually also during base flow. Increases in mean monthly concentrations of Ca2?+?, Mg2?+?, and K?+? due to the manipulation occurred from 1989 until about 1995, during the depletion of base cations in shallow flow paths in WB. Progressive depletion of Ca and Mg at greater soil depth occurred, causing stream concentrations to decline to pre-manipulation values. Mean monthly Si concentrations did not change in EB or WB, suggesting that the manipulation had no effect on mineral weathering rates. DOC concentrations in both streams did not exhibit inter- or intra-annual trends.  相似文献   
122.
Seasonal variations in streamflow and the associated hydrologic extremes impart significant temporal structure to watershed-scale chemical fluxes. Consequently, a careful characterization of the episodic-to-seasonal and longer-term streamflow variations is a first step toward developing a comprehensive view of the temporal dynamics of watershed processes in a changing climate. Here we analyze a nearly two-decade-long streamflow record for the East Bear subwatershed within the Bear Brook Watershed in Maine (BBWM) (USA) to understand the envelope of streamflow variability by season, with a particular focus on the high flow events that have a disproportionately large impact on the biogeochemical processes and fluxes. Interannual and longer-term variations in a number of derived statistical metrics of hydrologic variability are examined. Our analysis shows substantial interannual and longer-term variability in seasonal flow volumes and peak flows. Furthermore, a long, unimpaired streamflow record for the Narraguagus River (a proximate watershed to the BBWM) is examined with a view to understand the relative coherence in hydrologic variability, as well as quantifying the decadal and longer-term hydrologic variations in this region. We find that the streamflow variability in the two watersheds shows similarity in all seasons. A moving window analysis to assess the changing flood potential over time indicates upward trends in the recent decades. Spring season (March–May) flood estimates show a near-monotonic trend over the 1949–2008 record. Finally, empirical relationships between streamflow and large-scale atmospheric circulation patterns highlight the regional and global climatic drivers of hydrologic extremes in this region, including impacts from remnants of Atlantic hurricanes.  相似文献   
123.
The Bear Brook Watershed in Maine (BBWM), USA is a paired watershed study with chemical manipulation of one watershed (West Bear = WB) while the other watershed (East Bear = EB) serves as a reference. Characterization of hydrology and chemical fluxes occurred in 1987–1989 and demonstrated the similarity of the ca. 10 ha adjacent forested watersheds. From 1989–2010, we have added 1,800 eq (NH4)2SO4 ha???1 y???1 to WB. EB runoff has slowly acidified even as atmospheric deposition of SO $_{4}^{2-}$ has declined. EB acidification included decreasing pH, base cation concentrations, and alkalinity, and increasing inorganic Al concentration, as SO $_{4}^{2-}$ declined. Organic Al increased. WB has acidified more rapidly, including a 6-year period of increasing leaching of base cations, followed by a long-term decline of base cations, although still elevated over pretreatment values, as base saturation declined in the soils. Sulfate in WB has not increased to a new steady state because of increased anion adsorption accompanying soil acidification. Dissolved Al has increased dramatically in WB; increased export of particulate Al and P has accompanied the acidification in both watersheds, WB more than EB. Nitrogen retention in EB increased after 3 years of study, as did many watersheds in the northeastern USA. Nitrogen retention in WB still remains at over 80%, in spite of 20+ years of N addition. The 20-year chemical treatment with continuous measurements of critical variables in both watersheds has enabled the identification of decadal-scale processes, including ecosystem response to declining SO $_{4}^{-2}$ in ambient precipitation in EB and evolving mechanisms of treatment response in WB. The study has demonstrated soil mechanisms buffering pH, declines in soil base saturation, altered P biogeochemistry, unexpected mechanisms of storage of S, and continuous high retention of treatment N.  相似文献   
124.
Acidic deposition leads to the acidification of waters and accelerated leaching and depletion of soil base cations. The Bear Brook Watershed in Maine has used whole-watershed chemical manipulations to study the effects of elevated N and S on forest ecosystem function on a decadal time scale. The objectives of this study were to define the chemical and physical characteristics of soils in both the reference and treated watersheds after 17 years of treatment and assess evidence of change in soil chemistry by comparing soil studies in 1998 and 2006. Results from 1998 confirmed depletion of soil base cation pools and decreased pH due to elevated N and S within the treated watershed. However, between 1998 and 2006, during a period of declining SO $_{4}^{\,\,2-}$ deposition and continued whole-watershed experimental acidification on the treated watershed, there was little evidence of continued soil exchangeable base cation concentration depletion or recovery. The addition of a pulse of litterfall and accelerating mineralization from a severe ice storm in 1998 may have had significant effects on forest floor nutrient pools and cycling between 1998 and 2006. Our findings suggest that mineralization of additional litter inputs from the ice storm may have obscured temporal trends in soil chemistry. The physical data presented also demonstrate the importance of coarse fragments in the architecture of these soils. This study underscores the importance of long-term, quantitative soil monitoring in determining the trajectories of change in forest soils and ecosystem processes over time.  相似文献   
125.
The Tonle Sap is the largest wetland in Southeast Asia and one of the world’s most productive inland fisheries. The Mekong River inundates the Tonle Sap every year, shaping a mosaic of natural and agricultural habitats. Ongoing hydropower development, however, will dampen the flood pulse that maintains the Tonle Sap. This study established the current underlying relationship among hydrology, vegetation, and human use. We found that vegetation is strongly influenced by flood duration; however, this relationship was heavily distorted by fire, grazing, and rice cultivation. The expected flood pulse alteration will result in higher water levels during the dry season, permanently inundating existing forests. The reduction of the maximum flood extent will facilitate agricultural expansion into natural habitats. This study is the most comprehensive field survey of the Tonle Sap to date, and it provides fundamental knowledge needed to understand the underlying processes that maintain this important wetland.  相似文献   
126.
Concerns over increased water temperature of the Speed River as it flows through the City of Guelph in Southern Ontario and an observed relationship between summer stream temperatures and low dissolved oxygen levels in the river prompted an investigation into potential stream temperature management practices. Two mechanistic stream temperature models, SNTEMP and CE-QUAL-W2, were applied to the Speed River in order to gauge the effectiveness of various stream temperature management options. Calibrated versions of both models performed well (0.2 degrees C相似文献   
127.
接下来的几年,世界经济衰退将成为人们的关注焦点.无论何地或哪个行业的公司,包括安防行业在内,必将趋于存储现金、最有效地利用资本和从紧缩中获取尽可能多的资源.但是,对安防业而言,衰退同样也能带来新的机遇,将有五大全球趋势形成2009年的安防解决方案需求:艰难时代犯罪率上升,新兴市场的增长将继续,全球化缩小了这个世界,IT整合驱动系统集成,创新的、高成本效率的应用和管理服务.  相似文献   
128.
Environmental Science and Pollution Research - The successful use of solar energy for cooking requires the systems adopted not only to have technical attributes that conveniently address specific...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号