首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
  国内免费   3篇
废物处理   12篇
环保管理   21篇
综合类   4篇
基础理论   18篇
环境理论   1篇
污染及防治   13篇
评价与监测   4篇
社会与环境   1篇
  2022年   1篇
  2019年   3篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   6篇
  2008年   1篇
  2007年   2篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  1995年   1篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1980年   2篇
  1978年   1篇
  1975年   2篇
排序方式: 共有74条查询结果,搜索用时 359 毫秒
31.
A wide variety of antibiotics have been detected in natural water samples and this is of potential concern because of the adverse environmental effects of such antibiotic residues. One of the main sources of antibiotics effluence to the surrounding environment is livestock manures which often contain elevated concentrations of veterinary antibiotics (VAs) which survive digestion in the animal stomach following application in animal husbandry practices. In Korea, livestock manures are normally used for compost production indicating that there is potential for antibiotic release to the environment through compost application to agricultural lands. Therefore, reduction of the amount of VAs in composts is crucial. The purpose of this study was to understand the influence of the composting process and the components of the compost on the levels of three common classes of antibiotics (tetracyclines, sulfonamides, and macrolides). Composted materials at different stages of composting were collected from compost manufacturing plants and the variation in antibiotic concentrations was determined. Three different antibiotics, chlortetracycline (CTC), sulfamethazine (SMZ), and tylosin (TYL) at three different concentrations (2, 10, and 20 mg kg−1) were also applied to a mixture of pig manure and sawdust and the mixtures incubated using a laboratory scale composting apparatus to monitor the changes in antibiotic concentrations during composting together with the physicochemical properties of the composts. During composting, in both field and lab-scale investigations, the concentrations of all three different antibiotics declined below the relevant Korean guideline values (0.8 mg kg−1 for tetracyclines, 0.2 mg kg−1 for sulfonamides and 1.0 mg kg−1 for macrolides). The decline of tetracycline and sulfonamide concentrations was highly dependent on the presence of sawdust while there was no influence of sawdust on TYL decline.  相似文献   
32.
Conservation tillage can reduce soil loss; however, the residual herbicides normally used to control weeds are often detected in surface runoff at high levels, particularly if runoff-producing storms occur shortly after application. Therefore, we measured losses of alachlor, atrazine, linuron, and metribuzin from seven small (0.45-0.79-ha) watersheds for 9 yr (1993-2001) to investigate whether a reduced-input system for corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] production with light disking, cultivation, and half-rate herbicide applications could reduce losses compared with chisel and no-till. As a percentage of application, annual losses were highest for all herbicides for no-till and similar for chisel and reduced-input. Atrazine was the most frequently detected herbicide and yearly flow-weighted concentrations exceeded the drinking water standard of 3 microg L(-1) in 20 out of 27 watershed years that it was applied. Averaged for 9 corn yr, yearly flow-weighted atrazine concentrations were 26.3, 9.6, and 8.3 microg L(-1) for no-till, chisel, and reduced-input, respectively. Similarly, flow-weighted concentrations of alachlor exceeded the drinking water standard of 2 microg L(-1) in 23 out of 54 application years and in all treatments. Thus, while banding and half-rate applications as part of a reduced-input management practice reduced herbicide loss, concentrations of some herbicides may still be a concern. For all watersheds, 60 to 99% of herbicide loss was due to the five largest transport events during the 9-yr period. Thus, regardless of tillage practice, a small number of runoff events, usually shortly after herbicide application, dominated herbicide transport.  相似文献   
33.
Despite the use of recyclable materials increasing worldwide, waste disposal to landfill remains the most common method of waste management because it is simple and relatively inexpensive. Although landfill disposal is an effective waste management system, if not managed correctly, a number of potential detrimental environmental impacts have been identified including soil and ground water contamination, leachate generation, and gas emissions. In particular, improper post-closure treatment of landfills or deterioration of the conventional clay landfill capping were shown to result in land degradation which required remediation to secure contaminants within the landfill site.Phytoremediation is an attractive technology for landfill remediation, as it can stabilize soil and simultaneously remediate landfill leachate. In addition, landfill phytoremediation systems can potentially be combined with landfill covers (Phytocapping) for hydrological control of infiltrated rainfall. However, for the successful application of any phytoremediation system, the effective establishment of appropriate, desired vegetation is critical. This is because the typically harsh and sterile nature of landfill capping soil limits the sustainable establishment of vegetation. Therefore, the physicochemical properties of landfill capping soils often need to be improved by incorporating soil amendments. Biosolids are a common soil amendment and will often meet these demanding conditions because they contain a variety of plant nutrients such as nitrogen, phosphate, potassium, as well as a large proportion of organic matter. Such amendment will also ameliorate the physical properties of the capping soils by increasing porosity, moisture content, and soil aggregation. Contaminants which potentially originate from biosolids will also be remediated by activities congruent with the establishment of plants and bacteria.  相似文献   
34.
This study examines urban pollution within Derechos Humanos, a colonia popular in Matamoros, Tamaulipas, Mexico. General water quality indicators (coliform bacteria, total dissolved solids, ecologically relevant cations and anions), heavy metals (copper, lead, nickel, zinc, iron and cadmium), and volatile organic compounds (benzene, toluene, ethylbenzene, styrene, and dichlorobenzene and xylene isomers) were quantified within a wastewater canal running adjacent to the community. Water samples were collected at multiple sites along the banks of the canal and evidence of anthropogenic emissions existed at each sampling location. Sample site 2, approximately 10 m upstream of the colonia, contained both the widest range of hazardous pollutants and the greatest number exceeding US Environmental Protection Agency surface water standards. At each sampling location, high concentrations of total coliform (> 10(4) colonies/100 mL sample), lead (ranging from 0.05 to 0.40 mg/L), nickel (levels from 0.21 to 1.45 mg/L), and benzene (up to 9.80 mg/L) were noted.  相似文献   
35.
Winter application of manure poses environmental risks. Seven continuous corn, instrumented watersheds (approximately 1 ha each) at the USDA-ARS North Appalachian Experimental Watershed research station near Coshocton, Ohio were used to evaluate the environmental impacts of winter manure application when using some of the Ohio Natural Resources Conservation Service recommendations. For 3 yr on frozen, sometimes snow-covered, ground in January or February, two watersheds received turkey litter, two received liquid swine manure, and three were control plots that received N fertilizer at planting (not manure). Manure was applied at an N rate for corn; the target level was 180 kg N ha(-1) with a 30-m setback from the application area to the bottom of each watershed. Four grassed plots (61 x 12 m) were used for beef slurry application (9.1 Mg ha(-1) wet weight); two plots had 61 x 12 m grassed filter areas below them, and two plots had 30 x 12 m filter areas. There were two control plots. Nutrient concentrations were sometimes high, especially in runoff soon after application. However, most events with high concentrations occurred with low flow volumes; therefore, transport was minimal. Applying manure at the N rate for crop needs resulted in excess application of P. Elevated P losses contributed to a greater potential of detrimental environmental impacts with P than with N. Filter strips reduced nutrient concentrations and transport, but the data were too limited to compare the effectiveness of the 30- and 61-m filter strips. Winter application of manure is not ideal, but by following prescribed guidelines, detrimental environmental impacts can be reduced.  相似文献   
36.
The current study examined the anthropogenic accumulation and natural decrease in metal concentrations in agricultural soils following organic waste application. Three common organic wastes, including municipal sewage sludge, alcohol fermentation processing sludge, and pig manure compost (PMC), were applied annually to an agricultural soil under field conditions over 7 years (1994–2000) at a rate of 12.5, 25, and 50 ton ha?1 year?1 and the soil accumulation of three metals of concern (Cu, Pb, and Zn) was monitored. Subsequently, organic waste amendments ceased and the experimental plots were managed using conventional fertilization for another 10 years (2001–2010) and the natural decrease in metal concentrations monitored. Although Cu and Zn concentrations in all experimental plots did not exceed the relevant guideline values (150 mg kg?1 for Cu and 300 mg kg?1 for Zn), significant increases in metal concentrations were observed from cumulative application of organic wastes over 7 years. For instance, PMC treatment resulted in an increase in Cu and Zn from 9.8 and 72 mg kg?1 to 108.2 and 214.3 mg kg?1, respectively. In addition, the natural decrease in Cu and Zn was not significant as soils amended with PMC showed only a 16 and 19 % decline in Cu and Zn concentrations, respectively, even 10 years after amendment ceased. This research suggested that more attention must be paid during production of organic waste-based amendments and at the application stage.  相似文献   
37.
Changes in the toxicity levels of beach sediment, nearshore water, and bottom sediment samples were monitored with the Microtox® Test to evaluate the two in situ oil spill treatment options of natural attenuation (natural recovery--no treatment) and sediment relocation (surf washing). During a series of field trials, IF-30 fuel oil was intentionally sprayed onto the surface of three mixed sediment (pebble and sand) beaches on the island of Spitsbergen, Svalbard, Norway (78°56 N, 16°45 E). At a low wave-energy site (Site 1 with a 3-km wind fetch), where oil was stranded within the zone of normal wave action, residual oil concentrations and beach sediment toxicity levels were significantly reduced by both options in less than five days. At Site 3, a higher wave-energy site with a 40-km wind fetch, oil was intentionally stranded on the beach face in the upper intertidal/supratidal zones, above the level of normal wave activity. At this site under these experimental conditions, sediment relocation was effective in accelerating the removal of the oil from the sediments and reducing the Microtox® Test toxicity response to background levels. In the untreated (natural attenuation) plot at this site, the fraction of residual oil remaining within the beach sediments after one year (70%) continued to generate a toxic response. Chemical and toxicological analyses of nearshore sediment and sediment-trap samples at both sites confirmed that oil and suspended mineral fines were effectively dispersed into the surrounding environment by the in situ treatments. In terms of secondary potential detrimental effects from the release of stranded oil from the beaches, the toxicity level (Microtox® Test) of adjacent nearshore sediment samples did not exceed the Canadian regulatory limit for dredged spoils destined for ocean disposal.  相似文献   
38.
ABSTRACT: The calibration of a mixed-layer stratification model to the complex stratification region of Onondaga Lake is documented. The short- and long-term impacts of the closure of an adjoining alkali plant on the stratification regime of Onondaga Lake are evaluated with this model from the perspective of natural variations associated with meteorological variability. Chemical stratification prevailed in the lake during the operation of the facility as a result of its discharge of ionic waste. A predicted likely short-term impact of the closure, that was subsequently observed, was the failure of the lake to turn over in the spring immediately following the closure. Spring turnover did not occur regularly during the operation of the facility; but turnover can be expected to occur regularly in the future. Other projected changes in average stratification conditions include: 1) a 45% shorter period of stratification, 2) a 3m deeper upper mixed layer, and 3) a 30% lower maximum density gradient. Substantial variability in the stratification is predicted as a result of meteorological variability, indicating that comparison of characteristics for individual years during and after the operation of the facility could be misleading. The changes in the stratification regime are expected to affect water quality. In particular, certain features of the oxygen resources of the hypolimnioa are expected to improve (e.g., delayed onset of anoxia).  相似文献   
39.
A spatially extensive geochemical data set of stream water and bed sediment composition across the Tamar catchment in south-west England was analysed to identify the key bed sediment properties that control the in-stream dissolved reactive phosphorus (DRP) concentrations during baseflow conditions. Linear regression analysis of the streamwater DRP concentrations and the distribution coefficient K d for DRP revealed that the former is positively correlated with total SiO2 and Al2O3, and negatively correlated with K2O. The primary control on these major element distributions is the dominant bedrock geology. The data suggest that streamwater DRP concentrations are mainly controlled by adsorption to clay minerals. Where P concentrations in streamwater were considerably elevated by inputs from point sources, DRP concentrations are also controlled by precipitation of hydroxyapatite.  相似文献   
40.
In August of 2003 a severe wildfire burnt the majority of Fishtrap Creek, a 170 km2 catchment in central British Columbia, Canada. The objective of this study was to determine the short-term (15-month) influence of the wildfire on the amount and composition of fine sediment delivery and retention in the system and to compare it to a similar unburnt catchment. In the spring of 2004 automatic water samplers were installed at a gauging site on Fishtrap Creek to collect suspended sediments from the snowmelt runoff and gravel traps were deployed on the channel bed surface to collect composite samples of suspended fine sediment. Jamieson, the reference creek, exhibits similar geology and pre-burn vegetation and was sampled in the same manner for comparison. Composite suspended sediment collected in the traps was removed from the streams in mid-summer and early September. Quantitative estimates of the amount and particle size structure of the naturally stored fine sediment in, and on, the gravel creekbed were obtained in pre-melt, mid and late-summer conditions. Estimates of suspended sediment yields indicated that while the burnt system delivered 66% more material per unit area, the total seasonal suspended sediment yield was low (855 kg km−2) compared to other fire-disturbed systems. While the burnt catchment was primed to deliver sediment, the hydrologic drivers were not of sufficient magnitude to generate a substantial response, suggesting that in this first post-fire year the system was transport-limited, not supply-limited. Differences were noted in the spatial and seasonal composition of the <500 more OM% composite suspended sedimentswith the burnt catchment having significantly (P≤0.05) more OM%. Seasonally a significant increase of OM% in late summer samples was associated with instream biofilms and possible delivery of black carbon. The system’s post-fire response was not geomorphically substantial but significant biological differences were noted in the short-term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号