首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15538篇
  免费   160篇
  国内免费   127篇
安全科学   374篇
废物处理   666篇
环保管理   1794篇
综合类   2540篇
基础理论   4311篇
环境理论   4篇
污染及防治   4025篇
评价与监测   1056篇
社会与环境   963篇
灾害及防治   92篇
  2022年   127篇
  2021年   104篇
  2020年   100篇
  2019年   106篇
  2018年   195篇
  2017年   233篇
  2016年   326篇
  2015年   266篇
  2014年   452篇
  2013年   1202篇
  2012年   491篇
  2011年   691篇
  2010年   613篇
  2009年   581篇
  2008年   671篇
  2007年   713篇
  2006年   589篇
  2005年   513篇
  2004年   521篇
  2003年   507篇
  2002年   489篇
  2001年   647篇
  2000年   475篇
  1999年   254篇
  1998年   173篇
  1997年   206篇
  1996年   205篇
  1995年   236篇
  1994年   234篇
  1993年   180篇
  1992年   195篇
  1991年   183篇
  1990年   203篇
  1989年   187篇
  1988年   151篇
  1987年   162篇
  1986年   153篇
  1985年   156篇
  1984年   148篇
  1983年   140篇
  1982年   125篇
  1981年   120篇
  1980年   115篇
  1979年   124篇
  1978年   100篇
  1977年   113篇
  1975年   87篇
  1974年   87篇
  1973年   96篇
  1972年   86篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
641.
If the release mechanisms during selective chemical extraction of persistent organic pollutants (POP) mimic release mechanisms in natural systems during biological uptake, then a selective non-exhaustive extraction could give a quantitative measure of the bioavailable POP fraction. Supercritical fluid extraction (SFE) is suggested as a possible technique to estimate the amount of bioavailable polychlorinated biphenyls (PCBs) at contaminated sites and hence serve as a new tool in risk assessment. The uptake of PCBs by earthworm (Eisenia foetida) was investigated. PCB contaminated soil was pre-extracted with selective non-exhaustive SFE (50 degrees C, 350 bar, 1h), which removed on average 70% of the individual PCBs. Earthworms were placed in this pre-extracted soil, as well as in untreated soil. After 10 days, the PCB uptake by earthworms in the two systems was compared. The bioaccumulation factor (BAF) was 83% lower in the pre-extracted system than in the untreated system, demonstrating that SFE extracts primarily bioavailable contaminants. From the data, the bioavailable fraction could also be calculated to be 75%, which is very close to the 70% removed by SFE under the applied conditions. This suggests that the chemical methodology is capable of measuring the bioavailable fraction very accurately in this system.  相似文献   
642.
We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl(2)-soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain.  相似文献   
643.
Best EP  Geter KN  Tatem HE  Lane BK 《Chemosphere》2006,62(4):616-625
The objectives of this study were to provide data that can be used to predict exposure-based effects of RDX in aged soil on multiple endpoint organisms representing two trophic levels. These data can be used for defining criteria or reference values for environmental management and conducting specific risk assessment. Dose-response experiments formed the basis for the evaluation of toxic effects and transfer of contaminants from soil into two trophic levels. Long-term exposure tests were conducted to evaluate chronic, sublethal, toxicity and transfer of aged soil-based explosives, with RDX as main contaminant. In these tests, plants were exposed for 55 days in the greenhouse, biomass was determined and residues of explosives parent compounds and RDX metabolites were analyzed using HPLC techniques. Worms were exposed for 28 days (Eisenia fetida) and 42 days (Enchytraeus crypticus) in the laboratory, biomass and number were determined, and tissues were analyzed for explosives compounds. The plants tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of Lolium perenne was not significantly related to soil-RDX concentration, while biomass of Medicago sativa significantly increased. No screening benchmark for RDX in soil for plants was calculated, since concentrations up to 1,540 mg kg(-1) soil failed to reduce biomass by 20% as required for a LOEC. RDX, RDX-metabolite MNX, and accompanying HMX concentrations in plants were significantly related to concentrations in soil after 55 days of exposure (RDX: R(2) = 0.77-0.89; MNX R(2) = 0.53-0.77; HMX: R(2) = 0.67-0.71). The average bioconcentration factors (BCF) were for RDX 17 in L. perenne and 37 in M. sativa, and for HMX 2 in L. perenne and 44 in M. sativa. The worms also tolerated concentrations up to 1,540 mg RDX kg(-1) soil-DW. Biomass of E. fetida adults decreased with soil-RDX concentration, and a LOEC of 1,253 mg kg(-1) soil-DW was estimated. RDX concentrations in E. fetida were significantly related to concentrations in soil after 28-day exposure (R(2) = 0.88). The average BCF in E. fetida for RDX was 1. Because in response to exposure to RDX-contaminated soil the RDX concentrations in plants increased initially and decreased subsequently, while those in worms increased continuously, RDX in worm tissues may accumulate to higher concentrations than in plant tissues, regardless of the low average BCF for worms.  相似文献   
644.
The biodegradation of selected priority acidic pesticides MCPP, MCPA, 2,4-D, 2,4-DP and bentazone and the acidic pharmaceutical diclofenac was investigated using a membrane bioreactor (MBR) and a fixed-bed bioreactor (FBBR). A pilot plant MBR was fed with raw water spiked with the selected compounds. The experiment was repeated every week during four weeks to enhance the adaptation of microorganisms. In order to further study the biodegradability of these compounds, degradation studies in a FBBR were carried out. All the samples were analysed by solid phase extraction-gas chromatography-mass spectrometry (SPE-GC-MS). The results indicate that in the MBR compounds except for bentazone were eliminated within the first day of the experiment at rates ranging from 44% to 85%. Comparing these results with the degradation rates in the FBBR showed that in the latter only MCPP, MCPA 2,4-D and 2,4-DP were degraded after a much longer adaptation phase of microorganisms.  相似文献   
645.
Remediation schemes for contaminated sites are often evaluated to assess their potential for source zone reduction of mass, or treatment of the contaminant between the source and a control plane (CP) to achieve regulatory limits. In this study, we utilize a stochastic stream tube model to explain the behavior of breakthrough curves (BTCs) across a CP. At the local scale, mass dissolution at the source is combined with an advection model with first-order decay for the dissolved plume. Field-scale averaging is then employed to account for spatial variation in mass within the source zone, and variation in the velocity field. Under the assumption of instantaneous mass transfer from the source to the moving liquid, semi-analytical expressions for the BTC and temporal moments are developed, followed by derivation of expressions for effective velocity, dispersion, and degradation coefficients using the method of moments. It is found that degradation strongly influences the behavior of moments and the effective parameters. While increased heterogeneity in the velocity field results in increased dispersion, degradation causes the center of mass of the plume to shift to earlier times, and reduces the dispersion of the BTC by lowering the concentrations in the tail. Modified definitions of effective parameters are presented for degrading solutes to account for the normalization constant (zeroth moment) that keeps changing with time or distance to the CP. It is shown that anomalous dispersion can result for high degradation rates combined with wide variation in velocity fluctuations. Implications of model results on estimating cleanup times and fulfillment of regulatory limits are discussed. Relating mass removal at the source to flux reductions past a control plane is confounded by many factors. Increased heterogeneity in velocity fields causes mass fluxes past a control plane to persist, however, aggressive remediation between the source and CP can reduce these fluxes.  相似文献   
646.
The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.  相似文献   
647.
The response of a mixed microbial culture to cyclic aerobic and anoxic (denitrifying) conditions was studied in a chemostat with a 48-hour hydraulic residence time receiving a feed containing benzoate and pyruvate. When the cyclic conditions were 3-hour aerobic and 9-hour anoxic, the bacteria-degraded benzoate aerobically via the catechol 2,3-dioxygenase (C23DO) pathway. The quantity of C23DO remained constant throughout the anoxic period but decreased during the initial portion of the aerobic period before returning to the level present in the anoxic period. Anoxic biodegradation of benzoate was via benzoyl-CoA reductase, which remained constant regardless of the redox condition. The aerobic benzoate uptake capability (AeBUC) of the culture increased during the aerobic period but decreased during the anoxic period. The anoxic benzoate uptake capability (AnBUC) exhibited the opposite response. When the cycle was 6-hour aerobic and 6-hour anoxic, aerobic biodegradation of benzoate proceeded via the protocatechuate 4,5-dioxygenase (P45DO) pathway. The P45DO activity decreased early in the aerobic period, but then increased to the level present during the anoxic period. The level of benzoyl-CoA reductase was constant throughout the cycle. Furthermore, AeBUC and AnBUC responded in much the same way as in the 3/9-hour chemostat. During a 9-hour aerobic and 3-hour anoxic cycle, the culture synthesized both P45DO and C23DO, with the former having significantly higher activity. Unlike the other two cycles, AeBUC changed little during the aerobic period, although AnBUC decreased. The culture was well-adapted to the cyclic conditions as evidenced by the lack of accumulation of either substrate during any cycle tested. This suggests that cyclic aerobic-anoxic processes can be used in industrial wastewater-treatment facilities receiving significant quantities of simple aromatic compounds like benzoate. However, the results showed that the kinetics of benzoate degradation were different under aerobic and anoxic conditions, a situation that must be considered when modeling cyclic bioreactors receiving aromatic compounds.  相似文献   
648.
Rock column experiments were performed to examine the effects of matrix diffusion and hydrodynamic dispersion on the migration of radionuclides at the laboratory scale. Tritiated water and chloride transportation was studied in intact mica gneiss and in altered more porous tonalite columns with narrow flow channels. The column diffusion properties were estimated prior to water flow experiments using the gas diffusion method with helium as the tracer gas. The numerical compartment model for advection and dispersion, with and without matrix diffusion, was used to interpret the tracer transport in the columns. Matrix diffusion behavior was also distinguished from dominating hydrodynamic dispersion in rock column experiments at the slowest water flow rates.  相似文献   
649.
650.
A reverse-phase high pressure liquid chromatography/mass spectrometry (HPLC/MS method was developed for estimating n-octanol/water partition coefficients (Kow) of anthropogenic molecules in complex chemical mixtures (e.g., complex effluents and solid waste leachates). The average error for an estimated log Kow was ca. 0.5 and this error was similar for both aliphatic and aromatic compounds. The minimum level of detection using the total ion current profile generally decreased with increasing molecular weight between 100 and 600 daltons. Results obtained demonstrate that the HPLC/MS method is a viable technique for estimating log Kow's of anthropogenic chemicals in complex environmental samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号