首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   554篇
  免费   19篇
  国内免费   8篇
安全科学   33篇
废物处理   26篇
环保管理   194篇
综合类   37篇
基础理论   133篇
环境理论   1篇
污染及防治   101篇
评价与监测   41篇
社会与环境   10篇
灾害及防治   5篇
  2023年   4篇
  2022年   6篇
  2021年   9篇
  2020年   6篇
  2019年   10篇
  2018年   7篇
  2017年   16篇
  2016年   22篇
  2015年   19篇
  2014年   22篇
  2013年   50篇
  2012年   22篇
  2011年   38篇
  2010年   32篇
  2009年   28篇
  2008年   28篇
  2007年   43篇
  2006年   29篇
  2005年   22篇
  2004年   17篇
  2003年   17篇
  2002年   27篇
  2001年   9篇
  2000年   8篇
  1999年   11篇
  1998年   12篇
  1997年   7篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1973年   1篇
  1970年   1篇
  1963年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
21.
Chaves A  Shea D  Cope WG 《Chemosphere》2007,69(7):1166-1174
The environmental fate of chlorothalonil (CHT) and its metabolites were studied under field-variable conditions in a commercial banana plantation in Costa Rica. Weather conditions were representative of a tropical environment and the fungicide applications were typical of those in banana production. The test plots were treated with Bravo 720 at 1.2 l ha(-1) of formulated product. Field persistence of CHT in soil and on banana leaves was measured during five consecutive months and after three aerial applications of the fungicide. Residues were analyzed in soil, sediment, water, banana leaves and drift cards by gas and liquid chromatography coupled to mass spectrometry. In soil and on the surface of banana leaves, CHT dissipated rapidly with half-lives of 2.2 and 3.9 d, respectively. Soil residues persisted and were detected 85 d after application. The main metabolite found in soil, 4-hydroxy-chlorothalonil, accounted for approximately 65% of residues detected and was measured up to 6d after application.  相似文献   
22.
This article summarizes a study that evaluated a new decontamination technique for the mitigation and abatement of hazardous dust and particulates. Traditional decontamination methods are time‐consuming, expensive, can create airborne hazards, and do not always bring the concentration of the contaminant to acceptable levels. The use of the removable thin film coating will increase efficiency, will not generate airborne hazards, will decrease costs, and, with one application, will bring the hazardous dust concentrations to acceptable levels. Qualitative tests demonstrated that the removable thin film coating reduced the amount of visible luminescent dust (a surrogate for hazardous dust) from various surfaces. It also indicated that wherever there were minute scratches, the coating did not remove all of the dust. However, the qualitative tests showed that this decontamination method worked well as a preventative method, protecting clean areas from becoming contaminated when exposed to the luminescent dust. Further investigation was conducted using a scanning electron microscope (SEM) and carbon dust. Overall, the SEM experiment demonstrated that there was a statistically significant (p = 0.00007) removal of carbon dust (less than 10 μm in size) from surfaces with crevasses larger than 3 μm. The SEM also revealed that there were some limitations where there were large clusters of carbon dust; in these instances, the coating would tear and remain on the sample surface. One method to resolve this limitation involved adding KevlarTM fibers to the removable thin film coating. It was thought that this would increase the strength of the coating and eliminate the coating from tearing when removing large clusters of a contaminant. Unfortunately, this did not alleviate the issue. The use of an engineered textile, saturated with the coating, appeared to eliminate the problem with the coating not being able to remove the contaminant from the minute surface scratches and improved the removal process of the coating. © 2008 Wiley Periodicals, Inc.  相似文献   
23.
Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus   总被引:3,自引:0,他引:3  
Summary. Chemical defense against herbivores has rarely been investigated for freshwater plants, possibly due to the common misconception that herbivory on aquatic macrophytes is low and would not select for chemical defenses. In previous work, the freshwater angiosperm Saururus cernuus was shown to be a low preference food for omnivorous crayfish despite its high nutrient value and relatively soft texture. We used feeding by the crayfish Procambarus clarkii to guide fractionation of the deterrent lipid-soluble extract of this plant, leading to the identification of seven deterrent lignoid metabolites, (–)-licarin A, (+)-saucernetin, (–)-dihydroguaiaretic acid, (–)-sauriols A and B, (–)-saucerneol, and (–)-saucerneol methyl ether. Lignans have been implicated in terrestrial plant chemical defenses as insect growth inhibitors, insect toxins, nematocides, antibacterial, and antifungal agents. However, these activities have rarely been demonstrated using ecologically relevant methodologies in terrestrial systems, and never before in freshwater systems. The widespread nature of lignans amongst very distantly related plants, along with their rich diversity of molecular structure, suggests that they could play a large role in mediating plant-herbivore interactions. In addition to the lignoid compounds we identified, there were other compounds present in low concentration or unstable compounds that were deterrent, that did not appear to be lignans, but that we were unable to identify. This plant thus appears to be defended by a complex mixture of natural products. Received 6 June 2000; revised 23 August 2000; accepted 2 September 2000  相似文献   
24.
25.
Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p?=?0.002) among monitoring sites during baseflow, and significant interactive effects (p?=?0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.  相似文献   
26.
An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.  相似文献   
27.
Multimetric indices (MMIs) are routinely used by federal, state, and tribal entities to assess the quality of aquatic resources. Because of their diversity, abundance, ubiquity, and sensitivity to environmental stress, benthic macroinvertebrates are well suited for MMIs. West Virginia has used a statewide family-level stream condition index (WVSCI) since 2002. We describe the development, validation, and application of a geographically- and seasonally partitioned genus-level index of most probable stream status (GLIMPSS) for West Virginia wadeable streams. Natural classification strata were evaluated with reference site communities using mean similarity analysis and non-metric multidimensional scaling ordination. Forty-one metrics spanning six ecological categories (richness, composition, tolerance, dominance, trophic groups, and habits) were evaluated for sensitivity, responsiveness, redundancy, range and variability across seasonal (spring and summer) and regional (mountains and plateau) strata. Through a step-wise metric selection process, 8–10 metrics were aggregated to comprise four stratum-specific GLIMPSS models (mountain/plateau and spring/summer). A comparison of GLIMPSS with WVSCI exhibited marked improvements where GLIMPSS detecting greater stream impacts. A variation of the GLIMPSS, which differs only in the family-level taxonomic identification of Chironomidae (GLIMPSS (CF)), was comparable to the full GLIMPSS. These MMIs are robust yet practical tools for evaluating impacts to water quality, instream and riparian habitat, and aquatic wildlife in wadeable riffle-run streams based on sensitivity, responsiveness, precision, and independent validation. These models may be used effectively to detect degradation of the naturally occurring benthic community, assess causes of biological degradation, and plan and evaluate remediation of damaged stream ecosystems.  相似文献   
28.
Fungal based biopolymer matrix composites with lignocellulosic agricultural waste as the filler are a viable alternative for some applications of synthetic polymers. This research provides insight into the impact of the processing method and composition of agriwaste/fungal biopolymer composites on structure and mechanical properties. The impact of nutrition during inoculation and after a homogenization step on the three-point bend flexural modulus and strength was determined. Increasing supplemental nutrition at inoculation had little effect on the overall composite strength or modulus; however, increasing carbohydrate loading after a homogenization step increased flexural stress at yield and bulk flexural modulus. The contiguity of the network formed was notably higher in the latter scenario, suggesting that the increase in modulus and strength of the final composite after homogenization was the result of contiguous hyphal network formation, which improves the integrity of the matrix and the ability to transfer load to the filler particles.  相似文献   
29.
Water resources are increasingly impacted by growing human populations, land use, and climate changes, and complex interactions among biophysical processes. In an effort to better understand these factors in semiarid northern Utah, United States, we created a real‐time observatory consisting of sensors deployed at aquatic and terrestrial stations to monitor water quality, water inputs, and outputs along mountain to urban gradients. The Gradients Along Mountain to Urban Transitions (GAMUT) monitoring network spans three watersheds with similar climates and streams fed by mountain winter‐derived precipitation, but that differ in urbanization level, land use, and biophysical characteristics. The aquatic monitoring stations in the GAMUT network include sensors to measure chemical (dissolved oxygen, specific conductance, pH, nitrate, and dissolved organic matter), physical (stage, temperature, and turbidity), and biological components (chlorophyll‐a and phycocyanin). We present the logistics of designing, implementing, and maintaining the network; quality assurance and control of numerous, large datasets; and data acquisition, dissemination, and visualization. Data from GAMUT reveal spatial differences in water quality due to urbanization and built infrastructure; capture rapid temporal changes in water quality due to anthropogenic activity; and identify changes in biological structure, each of which are demonstrated via case study datasets.  相似文献   
30.
Each year governments and industry around the globe spend billions of dollars in search of treatments and cures for diseases that shorten lives, which often means gadgets, implants, radiation and pills. These “cures”, do not get to the root of the problem. Perhaps it is time for us to adjust our thinking to be more proactive instead of reactive in public health. Perhaps we need to consider confronting environmental pollution of air, soil and water at a local level. As the Physicians for Social Responsibility point out, we should be “preventing what we cannot cure”. One such preventive measure is ensuring that our communities, including our poor inner-city neighbourhoods, enjoy a clean environment. We challenge local and national policy-makers to respond to the global call and to take action to address environmental toxins; to take local action to ameliorate the pollution of the air, water and soil in so many of our nation’s neighbourhoods. A person’s neighbourhood, and the proximity of dangerous environmental contaminants within it, is a powerful predictor of how long s/he will live. While situations like the poisoning of the water in Flint, Michigan have gotten some attention, they are generally treated as the exception rather than a reflection of real environmental hazards that exist in the west. Moreover we wonder why more endemic issues of neighbourhood environmental contamination that shorten human lives are not a priority for local action or that it is not linked to disproportionate production of greenhouse gases that cause climate change/warming/chaos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号