首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
环保管理   11篇
综合类   3篇
基础理论   2篇
污染及防治   6篇
  2022年   1篇
  2016年   1篇
  2013年   3篇
  2011年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
21.
The impact of agriculture on regional air quality creates significant challenges to sustainability of food supplies and to the quality of national resources. Agricultural emissions to the atmosphere can lead to many nuisances, such as smog, haze, or offensive odors. They can also create more serious effects on human or environmental health, such as those posed by pesticides and other toxic industrial pollutants. It is recognized that deterioration of the atmosphere is undesirable, but the short- and long-term impacts of specific agricultural activities on air quality are not well known or understood. These concerns led to the organization of the 2009 American Chemical Society Symposium titled . An outcome of this symposium is this special collection of 14 research papers focusing on various issues associated with production agriculture and its effect on air quality. Topics included emissions from animal feeding operations, odors, volatile organic compounds, pesticides, mitigation, modeling, and risk assessment. These papers provide new research insights, identify gaps in current knowledge, and recommend important future research directions. As the scientific community gains a better understanding of the relationships between anthropogenic activities and their effects on environmental systems, technological advances should enable a reduction in adverse consequences on the environment.  相似文献   
22.
Hydrolysis is the major pathway for fumigant 1,3-dichloropropene (1,3-D) degradation in water and soil, yet the process is not well understood. Experiments were conducted to investigate the effect of various environmental factors on the rate of 1,3-D hydrolysis. Cis-, trans-1,3-D and their isomeric mixture were spiked into water and Arlington soil (coarse-loamy, mixed, thermic Haplic Durixeralfs) and incubated under different conditions. The rate of 1,3-D hydrolysis in water and soil were evaluated based on its residual amount and Cl- release, respectively. 1,3-D hydrolyzed rapidly in deionized water, with a half-life of 9.8 d at 20 degrees C. The hydrolysis was pH dependent, with low pH inhibiting and high pH favoring the reaction. Other factors such as isomeric differences, photo irradiation, suspended particles, and small amounts of co-solutes had little effect on the reaction. In soil, 1,3-D hydrolyzed following pseudo first-order kinetics. The hydrolysis rate constant increased with soil moisture content and decreased with the initial 1,3-D concentration. At 20 degrees C, > 60% of the 1,3-D applied at < 0.61 g kg(-1) in 10% moisturized soil hydrolyzed within 30 d. The soil particle size and mineralogy had little effect on the reaction rate. Organic matter promoted 1,3-D degradation via direct substitution reactions, and the trans-isomer showed preference over the cis- to react with certain organic molecules. Microbial contributions were initially insignificant, and became important as soil microorganisms adapted to the fumigant. The results suggest that to accelerate 1,3-D degradation, pH, soil moisture, and organic amendment should be considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号