In tropical areas, pioneer occupation fronts steer the rapid expansion of deforestation, contributing to carbon emissions. Up-to-date carbon emission estimates covering the long-term development of such frontiers depend on the availability of high spatial–temporal resolution data. In this paper, we provide a detailed assessment of carbon losses from deforestation and potential forest degradation from fragmentation for one expanding frontier in the Brazilian Amazon. We focused on one of the Amazonia’s hot-spots of forest loss, the BR-163 highway that connects the high productivity agricultural landscapes in Mato Grosso with the exporting harbors of the Amazon. We used multi-decadal (1984–2012) Landsat-based time series on forested and non-forested area in combination with a carbon book-keeping model. We show a 36% reduction in 1984s biomass carbon stocks, which led to the emission of 611.5 TgCO2 between 1985 and 1998 (43.6 TgCO2 year−1) and 959.8 TgCO2 over 1999–2012 (68.5 TgCO2 year−1). Overall, fragmentation-related carbon losses represented 1.88% of total emissions by 2012, with an increasing relevance since 2004. We compared the Brazilian Space Agency deforestation assessment (PRODES) with our data and found that small deforestation polygons not captured by PRODES had increasing importance on estimated deforestation carbon losses since 2000. The comparative analysis improved the understanding of data-source-related uncertainties on carbon estimates and indicated disagreement areas between datasets that could be subject of future research. Furthermore, spatially explicit, annual deforestation and emission estimates like the ones derived from this study are important for setting regional baselines for REDD+ or similar payment for ecosystem services frameworks.
The United Nations formulated the sustainable development goals (SDGs) in 2015 as a comprehensive global policy framework for addressing the most pressing social and environmental challenges currently facing humanity. In this paper, we analyse SDG 12, which aims to “ensure sustainable consumption and production patterns.” Despite long-standing political recognition of this objective, and ample scientific evidence both on its importance and on the efficacy of various ways of promoting it, the SDGs do not provide clear goals or effective guidance on how to accomplish this urgently needed transformation. Drawing from the growing body of research on sustainable consumption and production (SCP), the paper identifies two dominant vantage points—one focused on promoting more efficient production methods and products (mainly through technological improvement and informed consumer choice) and the other stressing the need to consider also overall volumes of consumption, distributional issues, and related social and institutional changes. We label these two approaches efficiency and systemic. Research shows that while the efficiency approach contains essential elements of a transition to sustainability, it is by itself highly unlikely to bring about sustainable outcomes. Concomitantly, research also finds that volumes of consumption and production are closely associated with environmental impacts, indicating a need to curtail these volumes in ways that safeguard social sustainability, which is unlikely to be possible without a restructuring of existing socioeconomic arrangements. Analysing how these two perspectives are reflected in the SDGs framework, we find that in its current conception, it mainly relies on the efficiency approach. On the basis of this assessment, we conclude that the SDGs represent a partial and inadequate conceptualisation of SCP which will hamper implementation. Based on this determination, this paper provides some suggestions on how governments and other actors involved in SDGs operationalisation could more effectively pursue SCP from a systemic standpoint and use the transformation of systems of consumption and production as a lever for achieving multiple sustainability objectives. 相似文献
We designed 3 image‐based field guides to tropical forest plant species in Ghana, Grenada, and Cameroon and tested them with 1095 local residents and 20 botanists in the United Kingdom. We compared users’ identification accuracy with different image formats, including drawings, specimen photos, living plant photos, and paintings. We compared users’ accuracy with the guides to their accuracy with only their prior knowledge of the flora. We asked respondents to score each format for usability, beauty, and how much they would pay for it. Prior knowledge of plant names was generally low (<22%). With a few exceptions, identification accuracy did not differ significantly among image formats. In Cameroon, users identifying sterile Cola species achieved 46–56% accuracy across formats; identification was most accurate with living plant photos. Botanists in the United Kingdom accurately identified 82–93% of the same Cameroonian species; identification was most accurate with specimens. In Grenada, users accurately identified 74–82% of plants; drawings yielded significantly less accurate identifications than paintings and photos of living plants. In Ghana, users accurately identified 85% of plants. Digital color photos of living plants ranked high for beauty, usability, and what users would pay. Black and white drawings ranked low. Our results show the potential and limitations of the use of field guides and nonspecialists to identify plants, for example, in conservation applications. We recommend authors of plant field guides use the cheapest or easiest illustration format because image type had limited bearing on accuracy; match the type of illustration to the most likely use of the guide for slight improvements in accuracy; avoid black and white formats unless the audience is experienced at interpreting illustrations or keeping costs low is imperative; discourage false‐positive identifications, which were common; and encourage users to ask an expert or use a herbarium for groups that are difficult to identify. Pruebas Empíricas de Guías de Campo de Plantas Hawthorne, Cable & Marshall 相似文献
Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long‐term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km2 eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large‐bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well‐forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia. Doscientos Años de Extinciones Locales de Aves en la Amazonia Oriental 相似文献
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción 相似文献
Conservation policy sits at the nexus of natural science and politics. On the one hand, conservation scientists strive to maintain scientific credibility by emphasizing that their research findings are the result of disinterested observations of reality. On the other hand, conservation scientists are committed to conservation even if they do not advocate a particular policy. The professional conservation literature offers guidance on negotiating the relationship between scientific objectivity and political advocacy without damaging conservation science's credibility. The value of this guidance, however, may be restricted by limited recognition of credibility's multidimensionality and emergent nature: it emerges through perceptions of expertise, goodwill, and trustworthiness. We used content analysis of the literature to determine how credibility is framed in conservation science as it relates to apparent contradictions between science and advocacy. Credibility typically was framed as a static entity lacking dimensionality. Authors identified expertise or trustworthiness as important, but rarely mentioned goodwill. They usually did not identify expertise, goodwill, or trustworthiness as dimensions of credibility or recognize interactions among these 3 dimensions of credibility. This oversimplification may limit the ability of conservation scientists to contribute to biodiversity conservation. Accounting for the emergent quality and multidimensionality of credibility should enable conservation scientists to advance biodiversity conservation more effectively. 相似文献