首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17455篇
  免费   163篇
  国内免费   187篇
安全科学   463篇
废物处理   683篇
环保管理   2135篇
综合类   3733篇
基础理论   4166篇
环境理论   15篇
污染及防治   4310篇
评价与监测   1283篇
社会与环境   902篇
灾害及防治   115篇
  2022年   143篇
  2021年   144篇
  2019年   130篇
  2018年   271篇
  2017年   272篇
  2016年   374篇
  2015年   308篇
  2014年   489篇
  2013年   1251篇
  2012年   593篇
  2011年   777篇
  2010年   607篇
  2009年   680篇
  2008年   727篇
  2007年   769篇
  2006年   730篇
  2005年   631篇
  2004年   553篇
  2003年   546篇
  2002年   544篇
  2001年   659篇
  2000年   428篇
  1999年   307篇
  1998年   195篇
  1997年   221篇
  1996年   215篇
  1995年   241篇
  1994年   227篇
  1993年   159篇
  1992年   193篇
  1991年   194篇
  1990年   190篇
  1989年   152篇
  1988年   170篇
  1987年   109篇
  1986年   144篇
  1985年   144篇
  1984年   140篇
  1983年   133篇
  1982年   136篇
  1981年   136篇
  1980年   105篇
  1979年   118篇
  1978年   114篇
  1977年   92篇
  1976年   94篇
  1974年   111篇
  1972年   93篇
  1967年   107篇
  1964年   98篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
The biocatalytic elimination of the endocrine disrupting chemicals (EDC) nonylphenol (NP) and bisphenol A (BPA) and the personal care product ingredient triclosan (TCS) by the enzyme preparation from the white rot fungus Coriolopsis polyzona was investigated. Analysis of variance methodology showed that the pH and the temperature are statistically significant factors in the removal of NP, BPA and TCS. The elimination of NP and TCS was best at a temperature of 50 degrees C and the disappearance of BPA at 40 degrees C, whereas the most suitable pH for all three micropollutants was 5. After a 4-h treatment of the three target compounds at concentrations of 5 mg l(-1) all of the NP and BPA were eliminated. In the case of TCS, 65% was removed after either a 4 or an 8-h treatment. The utilisation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) in the laccase/mediator system significantly increased the efficiency of the enzymatic treatment. The elimination of NP and BPA was directly associated with the disappearance of the estrogenic activity. Mass spectrometry analysis showed that the enzymatic treatment produced high molecular weight metabolites through a radical polymerization mechanism of NP, BPA and TCS. These oligomers were produced through the formation of C-C or C-O bonds. The polymerization of NP produced dimers, trimers, tetramers and pentamers which had molecular weights of 438, 656, 874 and 1092 amu respectively. The polymerization of BPA produced dimers, trimers and tetramers which had molecular weights of 454, 680 and 906 amu. Finally, the polymerization of TCS produced dimers, trimers and tetramers which had molecular weights of 574, 859 and 1146 amu.  相似文献   
942.
Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and other organic micropollutants were determined in dated sediment/soil cores collected from the flood-plain of the river Elbe near Pevestorf (PT), approximately 125 km upstream of Hamburg, and Heuckenlock (HL) in southeast of Hamburg. Concentrations of PCDD/Fs peaked sharply at PT in the 1950s and at HL at the end of the 1940s. Cluster analyses provide evidence that the region of Bitterfeld-Wolfen (about 350-400 km upstream of Hamburg) could be the source of the PCDD/F contamination existing in the cores PT and HL since the 1940s. Obviously it is caused by sediments of the river Elbe of a similar composition. Whereas the PCDD/Fs, HCHs (hexacyclohexane isomers), DDX (DDT, DDD, DDE), and tetrachlorinated ethers in PT and HL presumably originated predominantly from the Bitterfeld-Wolfen region, organotin compounds in HL and dichlorinated haloethers in HL during the 1940s and 1950s can probably largely be attributed to emissions from the Hamburg region. Although they are separated by a large distance, in both sediment cores PT and HL concentrations and composition patterns of most organic micropollutants analyzed widely match. Inductively it can be concluded that similar contaminations will be found in many of the river bank soils between the Bitterfeld-Wolfen region and Hamburg. Excavation of top soils may uncover highly contaminated materials. Since the dated sediment cores show the variation in contaminants in the Elbe sediments over a defined time period, it is possible to make an approximate assessment of the actual degree of contamination to be expected in areas where in previous decades contaminated dredged sediments from the Elbe and from the Port of Hamburg have been deposited on land and used for building plots or for agricultural purposes.  相似文献   
943.
The disposal of fly-ash (FA) from coal-fired power stations causes significant economic and environmental problems. Use of such contaminated sites for crop production and use of contaminated water for irrigation not only decreases crop productivity but also poses health hazards to humans due to accumulation of toxic metals in edible grains. In the present investigation, three rice cultivars viz., Saryu-52, Sabha-5204, and Pant-4 were grown in garden soil (GS, control) and various amendments (10%, 25%, 50%, 75% and 100%) of FA for a period of 90 days and effect on growth and productivity of plant was evaluated vis-a-vis metal accumulation in the plants. The toxicity of FA at higher concentration (50%) was reflected by the reduction in photosynthetic pigments, protein and growth parameters viz., plant height, root biomass, number of tillers, grain and straw weight. However, at lower concentrations (10-25%), FA enhanced growth of the plants as evident by the increase of studied growth parameters. The cysteine and non-protein thiol (NP-SH) content showed increase in their levels up to 100% FA as compared to control, however, maximum content was found at 25% FA in Saryu-52 and Pant-4 and at 50% FA in Sabha-5204. Accumulation of Fe, Si, Cu, Zn, Mn, Ni, Cd and As was investigated in roots, leaves and seeds of the plants. Fe accumulation was maximum in all the parts of plant followed by Si and both showed more translocation to leaves while Mn, Zn, Cu, Ni and Cd showed lower accumulation and most of the metal was confined to roots in all the three cultivars. As was accumulated only in leaves and was not found to be in detectable levels in roots and seeds. The metal accumulation order in three rice cultivars was Fe > Si > Mn > Zn > Ni > Cu > Cd > As in all the plant parts. The results showed that rice varieties Saryu-52 and Sabha-5204 were more tolerant and could show improved growth and yield in lower FA application doses as compared to Pant-4. Thus, Sabha-5204 and Saryu-52 are found suitable for cultivation in FA amended agricultural soils for better crop yields.  相似文献   
944.
Analytical technology is continuously improving, developing better methods for isolating and concentrating trace compounds in environmental samples. Polycyclic and nitro musks (PNMs) are one group of emerging trace compounds detected in municipal wastewater. Differences in sample storage, preparation, and extraction methods for their measurement have led to variability in results. We analyzed 11 PNMs by GC/MS and compared the results of different storage times and extraction methods (supercritical fluid (SFE) or microwave-assisted (MAE)) for 202 samples of primary sludge, waste activated sludge (WAS), raw sludge, and aerobically/anaerobically digested biosolids collected from Canadian municipal wastewater treatment plants. Sixty-three air-dried samples were extracted by SFE, and 139 air-dried, centrifuged, or filtered samples were extracted by MAE. The mean surrogate recoveries were 89% (standard deviation (SD)=11%) for d(10)-anthracene by SFE and 88% (SD=14%) for d(10)-phenanthrene by MAE. Storage study results showed that PNM concentrations changed by a mean of 7% and 9% for primary sludge and WAS respectively after four weeks and decreased up to 25% after 13.5 months of storage in amber glass containers at -18 degrees C. Air-drying of sludge at room temperature caused losses of about 50% of PNM concentrations compared to centrifugation. The proportions of PNMs present in the liquid phase of sludge samples were less than 5% compared to proportions in the sludge solids. The most complete liquid-solid separation was achieved by filtration of frozen/thawed sludge samples, producing a liquid phase that contained less than 1% of the total musk content of the sample.  相似文献   
945.
The purpose of this pilot study was to determine whether perfluorooctanesulfonate (PFOS,C(8)F(17)SO(3)(-)) and perfluorooctanoate (PFOA,C(7)F(15)CO(2)(-)) concentrations in American Red Cross blood donors from Minneapolis-St. Paul, Minnesota have declined after the 2000-2002 phase-out of perfluorooctanesulfonyl-fluoride (POSF, C(8)F(17)SO(2)F)-based materials by the primary global manufacturer, 3M Company. Forty donor plasma samples, categorized by age and sex, were collected in 2005, and PFOS and PFOA concentrations were compared to 100 (non-paired) donor serum samples collected in 2000 from the same general population that were analyzed at the time using ion-pair extraction methods with tetrahydroperfluorooctanesulfonate as an internal standard. Eleven of the 100 samples originally collected were reanalyzed with present study methods that involved (13)C- labeled PFOA spiked into the donor samples, original samples, control human plasma, and the calibration curve prior to extraction, and was used as a surrogate to monitor extraction efficiency. Quantification was performed by high performance liquid chromatography tandem mass spectrometry methods. Among the 100 serum samples analyzed for PFOS, the geometric mean was 33.1 ng ml(-1) (95% CI 29.8-36.7) in 2000 compared to 15.1 ng ml(-1) (95% CI 13.3-17.1) in 2005 (p<0.0001) for the 40 donor plasma samples. The geometric mean concentration for PFOA was 4.5 ng ml(-1) (95% CI 4.1-5.0) in 2000 compared to 2.2 ng ml(-1) (95% CI 1.9-2.6) in 2005 (p<0.0001). The decrease was consistent across donors' age and sex. To confirm these preliminary findings, additional sub-sets of year 2000 samples will be analyzed, and a much larger biomonitoring study of other locations is planned.  相似文献   
946.
Monitoring of immission of persistent organic pollutants in the industrialized area of Volta Redonda (V.R.) and in the National Park of Itatiaia (PNI) in southeast Brazil was performed using an endemic bromeliad species as biomonitor and measuring bulk deposition rates of polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). For the sum of PCB, overall deposition rates were between 17 and 314 ng/(m2 day) in winter and between 43 and 81 ng/(m2 day) in summer, respectively. Deposition rates of dioxin-like PCBs ranged from 0.14 to 2.8 pg WHO-TEQ/(m2 day) in winter and from 0.90 to 4.3 pg WHO-TEQ/(m2 day) in summer. PCB deposition rates (total PCB and WHO-TEQ) were in the same range in winter in V.R. and PNI. In summer, contamination levels in V.R. were 6-10-folds higher than in PNI. PCB concentrations in biomonitor samples from V.R. and PNI were in the same range in summer and in winter. Concentrations of total PCB ranged from 14 to 95 microg/kg dry matter (d.m.) in winter and from 18 to 27 microg/kg d.m. in summer, respectively. The TEQ values were between 1.7 and 4.1 ng WHO-TEQ/kg d.m. in winter and between 1.9 and 2.9 ng WHO-TEQ/kg d.m. in summer. PCB concentrations of di-ortho PCB but not of non-ortho PCB were a factor of 2-4 lower in summer in both areas. PCB congener profiles resembled those from technical formulations. The profiles shifted to the higher chlorinated congeners in summer, probable due to revolatilisation of the lighter components at higher temperatures. PCB profiles in biomonitor resembled those from deposition samples and the shift to the heavier congeners in summer was even more pronounced. PAH deposition rates were in a similar range in both areas (131-2415 ng/(m2 day)). PAH levels in biomonitor samples from V.R. were about one order of magnitude higher than in samples from PNI indicating the impact of local sources. PAH profiles revealed stationary thermal processes as main source of contamination in V.R. whereas in PNI, biomass burning seems to be the main contamination source.  相似文献   
947.
Modeling in-situ uranium(VI) bioreduction by sulfate-reducing bacteria   总被引:1,自引:0,他引:1  
We present a travel-time based reactive transport model to simulate an in-situ bioremediation experiment for demonstrating enhanced bioreduction of uranium(VI). The model considers aquatic equilibrium chemistry of uranium and other groundwater constituents, uranium sorption and precipitation, and the microbial reduction of nitrate, sulfate and U(VI). Kinetic sorption/desorption of U(VI) is characterized by mass transfer between stagnant micro-pores and mobile flow zones. The model describes the succession of terminal electron accepting processes and the growth and decay of sulfate-reducing bacteria, concurrent with the enzymatic reduction of aqueous U(VI) species. The effective U(VI) reduction rate and sorption site distributions are determined by fitting the model simulation to an in-situ experiment at Oak Ridge, TN. Results show that (1) the presence of nitrate inhibits U(VI) reduction at the site; (2) the fitted effective rate of in-situ U(VI) reduction is much smaller than the values reported for laboratory experiments; (3) U(VI) sorption/desorption, which affects U(VI) bioavailability at the site, is strongly controlled by kinetics; (4) both pH and bicarbonate concentration significantly influence the sorption/desorption of U(VI), which therefore cannot be characterized by empirical isotherms; and (5) calcium-uranyl-carbonate complexes significantly influence the model performance of U(VI) reduction.  相似文献   
948.
Dated sediment cores provide an excellent way to investigate the historical input of persistent organic pollutants into the environment and to identify possible sources of pollution. The vertical distribution of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/F) and polychlorinated biphenyls (PCB) was investigated in a sediment core from Greifensee to elucidate the historical trends of PCDD/F and PCB inputs between 1848 and 1999. Concentrations of PCB and PCDD/F increased by more than one order of magnitude between 1930 and 1960. PCB and PCDD/F concentrations were 5700 ng/kg dry weight (dw) and 160 ng/kg dw, respectively, in sediments originating from the late 1930s and reached a maximum of 130,000 ng/kg dw and 2400 ng/kg dw, respectively, in the early 1960s. From 1960 on, concentrations decreased to the 1930s level by the mid 1980s. A remarkable shift in the PCDD/F pattern was observed after the early 1940s. Before 1940, the PCDD/F pattern was PCDF dominated (ratio of PCDD to PCDF=0.41+/-0.11), while the PCDD started to be the major species after the early 1940s (ratio of PCDD to PCDF=1.46+/-0.38). The temporal trends of PCB and PCDD/F correlate surprisingly well with each other. This might be due to the coincidence of two factors. The introduction of PCB on the market in the 1930s resulted in emissions due to the widespread use of these industrial chemicals. In the same time period, waste incineration became an increasingly popular way to get rid of garbage, boosting the PCDD/F emissions significantly. The rapid decline of PCDD/F and PCB concentrations in the sediment starting in the early 1960s reflects the result of better emission control techniques in thermal processes and the improvement of waste water treatment in the catchment of Greifensee.  相似文献   
949.
A two-step process for the removal of dinitrotoluene from water is presented: zero-valent iron reduction is coupled with peroxidase-catalyzed polymerization of the resulting diaminotoluenes (DAT). The effect of pH was examined in the reduction step: at pH 6 the reaction occurred much more rapidly than at pH 8. In the second step, optimal pH and substrate ratio, minimal enzyme concentration and effect of polyethylene glycol (PEG) as an additive for greater than 95% conversion of DAT, over a 3h reaction period were determined using high performance liquid chromatography. Two enzymes were investigated and compared: Arthromyces ramosus peroxidase (ARP) and soybean peroxidase (SBP). The optimal pH values were 5.4 and 5.2 for ARP and SBP, respectively, but SBP was more resistant to mild acid whereas ARP was more stable in neutral solutions. SBP was found to have a greater hydrogen peroxide demand (optimal peroxide/DAT molar ratio for SBP: 2.0 and 3.0 for 2,4-diaminotoluene (2,4-DAT) and 2,6-diaminotoluene (2,6-DAT), respectively; for ARP: 1.5 and 2.75 for 2,4-DAT and 2,6-DAT, respectively) but required significantly less enzyme (0.01 and 0.1 U ml(-1) for 2,4-DAT and 2,6-DAT, respectively) to convert the DAT than ARP (0.4 and 1.5 U ml(-1) for 2,4-DAT and 2,6-DAT, respectively). PEG was shown to have no effect upon the degree of substrate conversion for either enzyme.  相似文献   
950.
Juwarkar AA  Nair A  Dubey KV  Singh SK  Devotta S 《Chemosphere》2007,68(10):1996-2002
This research focuses on column experiments conducted to evaluate the potential of environmentally compatible rhamnolipid biosurfactant produced by Pseudomonas aeruginosa strain BS2 to remove heavy metals (Cd and Pb) from artificially contaminated soil. Results have shown that di-rhamnolipid removes not only the leachable or available fraction of Cd and Pb but also the bound metals as compared to tap water which removed the mobile fraction only. Washing of contaminated soil with tap water revealed that approximately 2.7% of Cd and 9.8% of Pb in contaminated soil was in freely available or weakly bound forms whereas washing with rhamnolipid removed 92% of Cd and 88% of Pb after 36 h of leaching. This indicated that di-rhamnolipid selectively favours mobilization of metals in the order of Cd>Pb. Biosurfactant specificity observed towards specific metal will help in preferential elution of specific contaminant using di-rhamnolipid. It was further observed that pH of the leachates collected from heavy metal contaminated soil column treated with di-rhamnolipid solution was low (6.60-6.78) as compared to that of leachates from heavy metal contaminated soil column treated with tap water (pH 6.90-7.25), which showed high dissolution of metal species from the contaminated soil and effective leaching of metals with treatment with biosurfactant. The microbial population of the contaminated soil was increased after removal of metals by biosurfactant indicating the decrease of toxicity of metals to soil microflora. This study shows that biosurfactant technology can be an effective and nondestructive method for bioremediation of cadmium and lead contaminated soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号