首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3402篇
  免费   70篇
  国内免费   33篇
安全科学   120篇
废物处理   134篇
环保管理   625篇
综合类   526篇
基础理论   891篇
环境理论   9篇
污染及防治   812篇
评价与监测   193篇
社会与环境   148篇
灾害及防治   47篇
  2023年   15篇
  2022年   18篇
  2021年   40篇
  2020年   21篇
  2019年   32篇
  2018年   81篇
  2017年   77篇
  2016年   85篇
  2015年   86篇
  2014年   97篇
  2013年   247篇
  2012年   162篇
  2011年   212篇
  2010年   156篇
  2009年   168篇
  2008年   181篇
  2007年   219篇
  2006年   212篇
  2005年   155篇
  2004年   109篇
  2003年   107篇
  2002年   116篇
  2001年   67篇
  2000年   59篇
  1999年   50篇
  1998年   50篇
  1997年   61篇
  1996年   47篇
  1995年   54篇
  1994年   50篇
  1993年   29篇
  1992年   31篇
  1991年   23篇
  1990年   23篇
  1989年   11篇
  1988年   15篇
  1987年   14篇
  1986年   21篇
  1985年   17篇
  1984年   20篇
  1983年   21篇
  1982年   17篇
  1981年   16篇
  1980年   18篇
  1979年   20篇
  1978年   13篇
  1977年   10篇
  1965年   11篇
  1963年   8篇
  1957年   10篇
排序方式: 共有3505条查询结果,搜索用时 15 毫秒
151.
Factors affecting TCLP lead leachability from computer CPUs   总被引:1,自引:0,他引:1  
The factors impacting lead leachability from computer central processing units (CPUs) during the toxicity characteristic leaching procedure (TCLP) were investigated. Several CPUs were disassembled and their component materials were decreased in size to meet the requirements of the TCLP. The impact of CPU composition was examined by leaching different combinations of the CPU components. The ferrous metal content of the mixture greatly impacted lead leaching. TCLP lead concentrations of CPUs predicted by leaching the lead-bearing printed wire boards alone were much greater than those measured when the ferrous metal of the CPU was included in the mixture. The leaching of iron and zinc from the galvanized steel components of the CPU created electrochemical conditions where lead was less soluble. Additional size reduction beyond that required by the TCLP did not result in additional lead leaching. As the volume of head space above the leaching solution increased, the concentration of lead measured increased as well.  相似文献   
152.
Upflow reactors for riparian zone denitrification   总被引:1,自引:0,他引:1  
We used permeable reactive subsurface barriers consisting of a C source (wood particles), with very high hydraulic conductivities ( approximately 0.1-1 cm s(-1)), to provide high rates of riparian zone NO3-N removal at two field sites in an agricultural area of southwestern Ontario. At one site, a 0.73-m3 reactor containing fine wood particles was monitored for a 20-mo period and achieved a 33% reduction in mean influent NO3-N concentration of 11.5 mg L(-1) and a mean removal rate of 4.5 mg L(-1) d(-1) (0.7 g m(-2) d(-1)). At the second site, four smaller reactors (0.21 m3 each), two containing fine wood particles and two containing coarse wood particles, were monitored for a 4-mo period and were successful in attenuating mean influent NO3-N concentrations of 23.7 to 35.1 mg L(-1) by 41 to 63%. Mean reaction rates for the two coarse-particle reactors (3.2 and 7.8 mg L(-1) d(-1), or 1.5 and 3.4 g m(-2) d(-1)) were not significantly different (p > 0.2) than the rates observed in the two fine-particle reactors (5.0 and 9.9 mg L(-1) d(-1), or 1.8-3.5 g m(-2) d(-1)). A two-dimensional ground water flow model is used to illustrate how permeable reactive barriers such as these can be used to redirect ground water flow within riparian zones, potentially augmenting NO3- removal in this environment.  相似文献   
153.
Computer models help identify agricultural areas where P transport potential is high, but commonly used models do not simulate surface application of manures and P transport from manures to runoff. As part of an effort to model such P transport, we conducted manure slurry separation and soil infiltration experiments to determine how much slurry P infiltrates into soil after application but before rain, thus becoming less available to runoff. We applied dairy and swine slurry to soil columns and after both 24 and 96 h analyzed solids remaining on the soil surface for dry matter, total phosphorus (TP), and water-extractable inorganic (WEIP) and organic (WEOP) phosphorus. We analyzed underlying soils for Mehlich-3 and water-extractable P. We also conducted slurry separation experiments by sieving, centrifuging, and suction-filtering to determine which method could easily estimate slurry P infiltration into soils. About 20% of slurry solids and 40 to 65% of slurry TP and WEIP infiltrated into soil after application, rendering this P less available to transport in runoff. Slurry separation by suction-filtering through a screen with 0.75-mm-diameter openings was the best method to estimate this slurry P infiltration. Measured quantities of manure WEOP changed too much during experiments to estimate WEOP infiltration into soil or what separation method can approximate infiltration. Applying slurries to soils always increased soil P in the top 0 to 1 cm of soil, frequently in the 1- to 2-cm depth of soil, but rarely below 2 cm. Future research should use soils with coarser texture or large macropores, and slurry with low dry matter content (1-2%).  相似文献   
154.
Effect of humic substances on the precipitation of calcium phosphate   总被引:2,自引:0,他引:2  
For phosphorus (P) recovery from wastewater, the effect of humic substances (HS) on the precipitation of calcium phosphate was studied. Batch experiments of calcium phosphate precipitation were undertaken with synthetic water that contained 20 mg/L phosphate (as P) and 20 mg/L HS (as dissolved organic carbon, DOC) at a constant pH value in the range of 8.0-10.0. The concentration variations of phosphate, calcium (Ca) and HS were measured in the precipitation process; the crystalline state and compositions of the precipitates were analysed by powder X-ray diffraction (XRD) and chemical methods, respectively. It showed that at solution pH 8.0, the precipitation rate and removal efficiency of phosphate were greatly reduced by HS, but at solution pH ≥9.0, the effect of HS was very small. The Ca consumption for the precipitation of phosphate increased when HS was added; HS was also removed from solution with the precipitation of calcium phosphate. At solution pH 8.0 and HS concentrations ≤3.5 mg/L, and at pH ≥ 9.0 and HS concentrations ≤ 10 mg/L, the final precipitates were proved to be hydroxyapatite (HAP) by XRD. The increases of solution pH value and initial Ca/P ratio helped reduce the influence of HS on the precipitation of phosphate.  相似文献   
155.
156.
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species’ phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25–30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969–2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.  相似文献   
157.
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.  相似文献   
158.
A statistical procedure is developed to adjust natural streamflows simulated by dynamical models in downstream reaches, to account for anthropogenic impairments to flow that are not considered in the model. The resulting normalized downstream flows are appropriate for use in assessments of future anthropogenically impaired flows in downstream reaches. The normalization is applied to assess the potential effects of climate change on future water availability on the Rio Grande at a gage just above the major storage reservoir on the river. Model‐simulated streamflow values were normalized using a statistical parameterization based on two constants that relate observed and simulated flows over a 50‐year historical baseline period (1964–2013). The first normalization constant is a ratio of the means, and the second constant is the ratio of interannual standard deviations between annual gaged and simulated flows. This procedure forces the gaged and simulated flows to have the same mean and variance over the baseline period. The normalization constants can be kept fixed for future flows, which effectively assumes that upstream water management does not change in the future, or projected management changes can be parameterized by adjusting the constants. At the gage considered in this study, the effect of the normalization is to reduce simulated historical flow values by an average of 72% over an ensemble of simulations, indicative of the large fraction of natural flow diverted from the river upstream from the gage. A weak tendency for declining flow emerges upon averaging over a large ensemble, with tremendous variability among the simulations. By the end of the 21st Century the higher‐emission scenarios show more pronounced declines in streamflow.  相似文献   
159.
Qirui Li  Peter Zander 《Ambio》2020,49(4):962-985
In spite of positive expectations for environmental protection, payments for ecosystem services (PES) can bring about unintended disturbances to rural livelihoods. Based on resilience thinking, this article investigates livelihood resilience building at farm level through the interaction between farm adaptation and disturbances induced by China’s Grain for Green project (GGP). Cluster analysis was conducted to investigate the complexity and diversity of farm adaptation; the crafting of composite indexes was designed to value resilience through disturbance, sensitivity, and adaptability; regression analyses linked the resilience indexes and farm adaptation with access to resources. The results show three adaptation typologies (i.e. reclamation of retired lands, contractive farming, and expansive farming) with distinct land use structures and resilience scores, and highlight the need to improving farmers’ access and endowment of tangible (e.g. farming facilities) and intangible resources (e.g. skill training) for resilience-building practices in light of the GGP. The findings imply that policy interventions combining environmental restrictions with widening resource access to support alternative livelihoods can offset the unintended effects and amplify the success of PES programmes.  相似文献   
160.
Nitrate contamination of water sources is a concern where large amounts of nitrogen fertilizers are regularly applied to soils. Ingested nitrate from dietary sources and drinking water can be converted to nitrite and ultimately to N-nitroso compounds, many of which are known carcinogens. Epidemiologic studies of drinking water nitrate and cancer report mixed findings; a criticism is the use of nitrate concentrations from retrospective drinking water data to assign exposure levels. Residential point-of-use nitrate data are scarce; gaps in historical data for municipal supply finished water hamper exposure classification efforts. We used generalized linear regression models to estimate and compare historical raw water and finished water nitrate levels (1960s--1990s) in single source Iowa municipal supplies to determine whether raw water monitoring data could supplement finished water data to improve exposure assessment. Comparison of raw water and finished water samples (same sampling date) showed a significant difference in nitrate levels in municipalities using rivers; municipalities using other surface water or alluvial groundwater had no difference in nitrate levels. A regional aggregation of alluvial groundwater municipalities was constructed based on results from a previous study showing regional differences in nitrate contamination of private wells; results from this analysis were mixed, dependent upon region and decade. These analyses demonstrate using historical raw water nitrate monitoring data to supplement finished water data for exposure assessment is appropriate for individual Iowa municipal supplies using alluvial groundwater, lakes or reservoirs. Using alluvial raw water data on a regional basis is dependent on region and decade.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号