首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1560篇
  免费   30篇
  国内免费   12篇
安全科学   83篇
废物处理   61篇
环保管理   343篇
综合类   174篇
基础理论   387篇
环境理论   2篇
污染及防治   377篇
评价与监测   104篇
社会与环境   59篇
灾害及防治   12篇
  2023年   14篇
  2022年   20篇
  2021年   18篇
  2020年   14篇
  2019年   12篇
  2018年   23篇
  2017年   26篇
  2016年   38篇
  2015年   37篇
  2014年   38篇
  2013年   167篇
  2012年   45篇
  2011年   82篇
  2010年   59篇
  2009年   60篇
  2008年   74篇
  2007年   74篇
  2006年   89篇
  2005年   59篇
  2004年   53篇
  2003年   54篇
  2002年   61篇
  2001年   35篇
  2000年   37篇
  1999年   31篇
  1998年   26篇
  1997年   23篇
  1996年   22篇
  1995年   23篇
  1994年   22篇
  1993年   23篇
  1992年   13篇
  1991年   12篇
  1990年   20篇
  1989年   10篇
  1988年   15篇
  1987年   15篇
  1986年   11篇
  1985年   21篇
  1984年   16篇
  1983年   11篇
  1982年   15篇
  1981年   14篇
  1980年   13篇
  1979年   9篇
  1978年   10篇
  1977年   5篇
  1976年   5篇
  1974年   7篇
  1973年   6篇
排序方式: 共有1602条查询结果,搜索用时 15 毫秒
911.
Several biofuel cropping scenarios were evaluated with an improved version of Soil and Water Assessment Tool (SWAT) as part of the CenUSA Bioenergy consortium for the Boone River Watershed (BRW), which drains about 2,370 km2 in north central Iowa. The adoption of corn stover removal, switchgrass, and/or Miscanthus biofuel cropping systems was simulated to assess the impact of cellulosic biofuel production on pollutant losses. The stover removal results indicate removal of 20 or 50% of corn stover in the BRW would have negligible effects on streamflow and relatively minor or negligible effects on sediment and nutrient losses, even on higher sloped cropland. Complete cropland conversion into switchgrass or Miscanthus, resulted in reductions of streamflow, sediment, nitrate, and other pollutants ranging between 23‐99%. The predicted nitrate reductions due to Miscanthus adoption were over two times greater compared to switchgrass, with the largest impacts occurring for tile‐drained cropland. Targeting of switchgrass or Miscanthus on cropland ≥2% slope or ≥7% slope revealed a disproportionate amount of sediment and sediment‐bound nutrient reductions could be obtained by protecting these relatively small areas of higher sloped cropland. Overall, the results indicate that all biofuel cropping systems could be effectively implemented in the BRW, with the most robust approach being corn stover removal adopted on tile‐drained cropland in combination with a perennial biofuel crop on higher sloped landscapes. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
912.
Agricultural practices have constantly changed in West Africa, and understanding the factors that have driven the changes may help guide strategies to promote sustainable agriculture in the region. To contribute to such efforts, this paper analyzes drivers of change in farming practices in the region using data obtained from surveys of 700 farming households in five countries (Burkina Faso, Ghana, Mali, Niger and Senegal). The results showed that farmers have adopted various practices in response to the challenges they have faced during the last decade. A series of logit models showed that most changes farmers made to their practices are undertaken for multiple reasons. Land use and management changes including expanding farmed areas and using mineral fertilization and manure are positively related to perceived changes in the climate, such as more erratic rainfall. Planting new varieties, introducing new crops, crop rotation, expanding farmed area and using pesticides are positively associated with new market opportunities. Farm practices that require relatively high financial investment such as use of pesticides, drought-tolerant varieties and improved seeds were positively associated with the provision of technical and financial support for farmers through development projects and policies. Changes in markets and climate are both helping to promote needed changes in farming practices in West Africa. Therefore, policies that foster the development of markets for agricultural products, and improved weather- and climate-related information linked to knowledge of appropriate agricultural innovations in different environments are needed.  相似文献   
913.
Integrative research is increasingly a priority within the scientific community and is a central goal for the evolving field of sustainability science. While it is conceptually attractive, its successful implementation has been challenging and recent work suggests that the move towards interdisciplinarity and transdisciplinarity in sustainability science is being only partially realized. To address this from the perspective of social-ecological systems (SES) research, we examine the process of conducting a science of integration within the Southcentral Alaska Test Case (SCTC) of Alaska-EPSCoR as a test-bed for this approach. The SCTC is part of a large, 5 year, interdisciplinary study investigating changing environments and adaptations to those changes in Alaska. In this paper, we review progress toward a science of integration and present our efforts to confront the practical issues of applying proposed integration frameworks. We: (1) define our integration framework; (2) describe the collaborative processes, including the co-development of science through stakeholder engagement and partnerships; and (3) illustrate potential products of integrative, social-ecological systems research. The approaches we use can also be applied outside of this particular framework. We highlight challenges and propose improvements for integration in sustainability science by addressing the need for common frameworks and improved contextual understanding. These insights may be useful for capacity-building for interdisciplinary projects that address complex real-world social and environmental problems.  相似文献   
914.
This study analyzed the occurrence of Escherichia coli in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region using synoptic monitoring (samples taken throughout the watershed system) during base-flow conditions. The objective of the study was to evaluate the occurrence of E. coli during base-flow conditions for several months at seven different main channel and nine different tributary sampling sites in the Stock Creek watershed, a 49.3-km(2) basin located in Knoxville, TN. Escherichia coli densities were measured using the Colilert (Defined Substrate Technology) method. The instantaneous loads for E. coli were determined from measured flow rates and E. coli densities, with the highest loading rates observed in the late fall. The study indicated a strong correlation between E. coli load rate (colony-forming units [CFU]/d), 7-d antecedent precipitation, and turbidity. Water quality data, however, also exhibited a spatial dependency; for example, the E. coli load rate was better correlated with turbidity in the slower draining basin tailwater sampling sites than in the faster draining upstream headwater sampling sites. In the headwater sites, the E. coli load rate was better correlated with 7-d antecedent precipitation than turbidity.  相似文献   
915.
Soil carbon sequestration (SCS) has the potential to attenuate increasing atmospheric CO2 and mitigate greenhouse warming. Understanding of this potential can be assisted by the use of simulation models. We evaluated the ability of the EPIC model to simulate corn (Zea mays L.) yields and soil organic carbon (SOC) at Arlington, WI, during 1958-1991. Corn was grown continuously on a Typic Argiudoll with three N levels: LTN1 (control), LTN2 (medium), and LTN3 (high). The LTN2 N rate started at 56 kg ha(-1) (1958), increased to 92 kg ha(-1) (1963), and reached 140 kg ha(-1) (1973). The LTN3 N rate was maintained at twice the LTN2 level. In 1984, each plot was divided into four subplots receiving N at 0, 84, 168, and 252 kg ha(-1). Five treatments were used for model evaluation. Percent errors of mean yield predictions during 1958-1983 decreased as N rate increased (LTN1 = -5.0%, LTN2 = 3.5%, and LTN3 = 1.0%). Percent errors of mean yield predictions during 1985-1991 were larger than during the first period. Simulated and observed mean yields during 1958-1991 were highly correlated (R2 = 0.961, p < 0.01). Simulated SOC agreed well with observed values with percent errors from -5.8 to 0.5% in 1984 and from -5.1 to 0.7% in 1990. EPIC captured the dynamics of SOC, SCS, and microbial biomass. Simulated net N mineralization rates were lower than those from laboratory incubations. Improvements in EPIC's ability to predict annual variability of crop yields may lead to improved estimates of SCS.  相似文献   
916.
Due to variations in soil physicochemical properties, species physiology, and contaminant speciation, Pb toxicity is difficult to evaluate without conducting in vivo dose-response studies. Such tests, however, are expensive and time consuming, making them impractical to use in assessment and management of contaminated environments. One possible alternative is to develop a physiologically based extraction test (PBET) that can be used to measure relative bioaccessibility. We developed and correlated a PBET designed to measure the bioaccessibility of Pb to waterfowl (W-PBET) in mine-impacted soils located in the Coeur d'Alene River Basin, Idaho. The W-PBET was also used to evaluate the impact of P amendments on Pb bioavailability. The W-PBET results were correlated to waterfowl-tissue Pb levels from a mallard duck [Anas platyrhynchos (L.)] feeding study. The W-PBET Pb concentrations were significantly less in the P-amended soils than in the unamended soils. Results from this study show that the W-PBET can be used to assess relative changes in Pb bioaccessibility to waterfowl in these mine-impacted soils, and therefore will be a valuable test to help manage and remediate contaminated soils.  相似文献   
917.
To assess the potential for treated wastewater irrigation to impact levels of fecal indicator bacteria (FIB) and salinity in irrigated soils, levels of Escherichia coli, Enterococcus, and environmental covariates were measured in a treated wastewater holding pond (irrigation source water), water leaving the irrigation system, and in irrigated soils over 2 years in a municipal parkland in Arizona. Higher E. coli levels were measured in the pond in winter (56 CFU 100 mL−1) than in summer (17 CFU 100 mL−1); however, in the irrigation system, levels of FIB decreased from summer (26 CFU 100 mL−1) to winter (4 CFU 100 mL−1), possibly related to low winter water use and corresponding death of residual bacteria within the system. For over 2 years, no increase in FIB was found in irrigated soils, though highest E. coli levels (700 CFU g−1 soil) were measured in deeper (20–25 cm) soils during summer. Measurements of water inputs vs. potential evapotranspiration indicate that irrigation levels may have been sufficient to generate bacterial percolation to deeper soil layers during summer. No overall increase in soil salinity resulting from treated wastewater irrigation was detected, but distinct seasonal peaks as high as 4 ds m−1 occurred during both summers. The peaks significantly declined in winter when surface ET abated and more favorable water balances could be maintained. Monitoring of seasonal shifts in irrigation water quality and/or factors correlated with increases and decreases in FIB will aid in identification of any public health or environmental risks that could arise from the use of treated wastewater for irrigation.  相似文献   
918.
Al is a critical ecotoxicant in surface waters impacted by acidic deposition. Apart from the most acidic surface waters, Al concentrations are often considered to be controlled by Al(OH)(3) or aluminosilicate (clay) solubility for modelling studies. For many UK rivers there is no clear evidence for such solubility controls even though there is the potential under moderately acidic/alkaline conditions. Here, Al solubility in ground and river water is compared for acid sensitive catchments in mid-Wales. The results reveal that there may be a solubility control within the groundwater but a more complex state of affairs within the river. The groundwater is of high CO(2) content and once in the river it degasses to raise pH. However, there is limited change in Al concentration and hence the solubility relationship is lost. The results flag the potential importance of groundwater solubility controls for Al and the potential for the groundwater zone to act as an Al filter. For positive alkalinity groundwaters, the high CO(2) levels depress the pH to near the value for minimum Al solubility. However, there is no simple groundwater end-member. Examining Al solubility controls solely within the rivers provides cryptic and misleading clues to the hydrogeological controls for Al within catchments. Assessing the within-catchment processes requires direct measurement with full consideration of both inorganic and organic attenuation.  相似文献   
919.
Accurate determination of the levels of dissolved hydrophobic organic contaminants (HOCs) is an important step in estimating the dynamics of their inputs and losses in aqueous systems. This study explores an alternative method for efficiently sampling dissolved HOCs while mitigating a number of sampling artifacts associated with traditional methods. The adsorption characteristics of a new polymeric resin, PoraPak Rxn RP (PPR), were assessed using sorption isotherm experiments and fixed bed adsorption studies. The adsorption capacities and breakthrough times for four model contaminants (phenol, p-nitrophenol, naphthalene, and 2,4,6-tribromophenol) were proportional to the contaminant’s hydrophobicity. The ability of PPR to isolate dissolved polychlorinated biphenyls (PCBs) in real samples was compared with that of XAD-2, a well-known macroporous polymer that suffers from high background contamination. The results indicated that the PPR resin can be effectively used for monitoring HOCs, with low ∑PCB levels in blanks, decreasing solvent use, and reducing extraction times.  相似文献   
920.
Samples of PM(2.5) were collected to measure the concentrations of its chemical constituents at two rural locations, Potsdam and Stockton, NY from November 2002 to August 2005. These samples were collected on multiple filters at both sites, every third day for a 24-h interval with a speciation network sampler. The Teflo(R) filters were analyzed for PM(2.5) mass by gravimetry, and elemental composition by X-ray fluorescence (XRF). Nylasorb(R) filters and Teflo(R) filters were leached with water and analyzed for anions and cations, respectively, by ion chromatography (IC). Fine particulate matter (PM(2.5)) mass and its inorganic component measurements were statistically characterized, and the temporal behavior of these species were assessed. Over the entire study period, PM(2.5) mass concentrations were lower at Potsdam (8.35 mug/m(3)) than at Stockton (10.24 mug/m(3)). At both locations, organic matter (OM) was the highest contributor to mass. Sulfate was the second highest contributor to mass at 27.0% at Potsdam, and 28.7% at Stockton. Nitrate contributions to mass of 8.9 and 9.5% at Potsdam and Stockton, respectively, were the third highest. At both locations, fine PM mass exhibited an annual cycle with a pronounced summer peak and indications of another peak during the winter, consistent with an overall increase in the rate of secondary aerosol formation during the summer, and increased partitioning of ammonium nitrate to the particle phase and condensation of other semi-volatiles during the winter, respectively. An ion-balance analysis indicated that at both locations, during the summers as well as in the winters, the aerosol was acidic. Lognormal frequency distribution fits to the measured mass concentrations on a seasonal basis indicated the overall increase in particle phase secondary aerosol (sulfate and SOA) concentrations during the summers compared to the winters at both locations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号