首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   1篇
环保管理   6篇
综合类   1篇
基础理论   10篇
污染及防治   12篇
评价与监测   1篇
  2023年   1篇
  2015年   1篇
  2013年   14篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
11.
Abstract: Developmental instability, measured as fluctuating asymmetry (FA), is often used as a tool to measure stress and the overall quality of organisms. Under FA, it is assumed that control of symmetry during development is costly and that under stress the trajectory of development is disturbed, resulting in asymmetric morphologies. Amphibian emergent infectious diseases (EIDs), such as Ranavirus and chytrid fungus, have been involved in several mortality events, which makes them stressors and allows for the study of FA. We analyzed nine populations of green frogs (Rana clamitans) for the presence or absence of Ranavirus and chytrid fungus. Individuals were measured to determine levels of FA in seven traits under the hypothesis that FA is more likely to be observed in individuals infected by the pathogens. Significantly higher levels of FA were found in individuals with Ranavirus compared with uninfected individuals among all populations and all traits. We did not observe FA in individuals infected with chytrid fungus for any of the traits measured. Additionally, we observed a significant association between Ranavirus infection and levels of FA in both males and females, which may indicate this viral disease is likely to affect both sexes during development. Altogether, our results indicate that some EIDs may have far‐reaching and nonlethal effects on individual development and populations harboring such diseases and that FA can be used as a conservation tool to identify populations subject to such a stress.  相似文献   
12.
Geography inherently fills a 3D space and yet we struggle with displaying geography using, primarily, 2D display devices. Virtual environments offer a more realistically-dimensioned display space and this is being realized in the expanding area of research on 3D Geographic Information Systems (GISs). Traditionally, a GIS has only limited tools for statistical analysis, and 3D GIS research has concentrated on the visualization of the geographical terrain. Here we discuss linking multivariate statistical graphics to geography in the highly immersive C2 virtual reality environment at Iowa State University using mid-Atlantic streams data.  相似文献   
13.
The spill of 2,4,‐D in the Rhine river was used to show the evolution from simple to sophisticated models. The first simulation was done with an analytical solution of the dispersion‐advection equation without elimination. Elimination was introduced in a second simulation. The third simulation was carried out with a numerical model. This included elimination and variable dispersion. The lack of data limited the use of very detailed models.  相似文献   
14.
Measuring greenhouse gas (GHG) source emissions provides data for validation of GHG inventories, which provide the foundation for climate change mitigation. Two Toyota RAV4 electric vehicles were outfitted with high-precision instrumentation to determine spatial and temporal resolution of GHGs (e.g., nitrous oxide, methane [CH4], and carbon dioxide [CO2]), and other gaseous species and particulate metrics found near emission sources. Mobile measurement platform (MMP) analytical performance was determined over relevant measurement time scales. Pollutant residence times through the sampling configuration were measured, ranging from 3 to 11 sec, enabling proper time alignment for spatial measurement of each respective analyte. Linear response range for GHG analytes was assessed across expected mixing ratio ranges, showing minimal regression and standard error differences between 5, 10, 30, and 60 sec sampling intervals and negligible differences between the two MMPs. GHG instrument drift shows deviation of less than 0.8% over a 24-hr measurement period. These MMPs were utilized in tracer-dilution experiments at a California landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Replicate landfill measurements during October 2009 yielded annual CH4 emissions estimates of 0.10 ± 0.01, 0.11 ± 0.01, and 0.12 ± 0.02 million tonnes of CO2 equivalent (MTCO2E). These values compare favorably to California GHG Emissions Inventory figures for 2007, 2008, and 2009 of 0.123, 0.125, and 0.126 MTCO2E/yr, respectively, for this facility. Measurements to quantify NGCS boosting facility-wide emissions, during June 2010 yielded an equivalent of 5400 ± 100 TCO2E/yr under steady-state operation. However, measurements during condensate transfer without operational vapor recovery yield an instantaneous emission rate of 2–4 times greater, but was estimated to only add 12 TCO2E/yr overall. This work displays the utility for mobile GHG measurements to validate existing measurement and modeling approaches, so emission inventory values can be confirmed and associated uncertainties reduced.

Implications:?Measuring greenhouse gas (GHG) source emissions provides data and validation for GHG inventories, the foundation for climate change mitigation. Mobile measurement platforms with robust analytical instrumentation completed tracer-dilution experiments in California at a landfill and natural gas compressor station (NGCS) to quantify CH4 emissions. Data collected for landfill CH4 agree with the current California emissions inventory, while NGCS data show the possible variability from this type of facility. This work displays the utility of mobile GHG measurements to validate existing measurement and modeling approaches, such that emission inventory values can be confirmed, associated uncertainties reduced, and mitigation efforts quantified.  相似文献   
15.
16.
In Memoriam     
ABSTRACT

A feasibility study of polychlorinated biphenyl (PCB) removal from contaminated soils using microwave-generated steam (MGS) was performed. Initial experimental results show that MGS effectively removed PCBs from contaminated soil with an overall removal efficiency of greater than 98% at a steam-to-soil mass ratio of 3:1. Removal efficiency was found to be dependent upon the amount of steam employed, expressed as a mass ratio of steam applied to soil mass. Evaporation was identified as a major mechanism in removing PCBs from the soil. Rapid expansion and evaporation of pore water by microwave dielectric heating accelerated evaporation rates of PCB molecules. Increased solubility of PCBs into the heated aqueous phase is also hypothesized. Together these effects increase mass-transfer rates, thus enhancing removal of PCBs from the soil.  相似文献   
17.
Broiler litter, a mixture of poultry excreta and bedding material, is commonly used to fertilize grasslands in the southeastern USA. Previous work has shown that under certain situations, application of broiler (Gallus gallus domesticus) litter to grasslands may lead to elevated levels of phosphorus (P) in surface runoff. The EPIC simulation model may be a useful tool to identify those situations. This work was conducted to evaluate EPIC's ability to simulate event and annual runoff volume and losses of dissolved reactive phosphorus (DRP) from tall fescue (Festuca arundinacea Schreb.)-bermudagrass [Cynodon dactylon (L.) Pers.] paddocks fertilized with broiler litter. The EPIC simulations of event runoff volume showed a trend toward underestimation, particularly for runoff events >30 mm. On an annual basis, EPIC also tended to underestimate runoff, especially at runoff volumes > 100 mm. Both event and annual runoff estimations were strongly associated with observed values, indicating that model calibration could improve the simulation of surface runoff volume. The relationship between simulated and observed values of DRP loss was relatively poor on an event basis (r=0.65), but was stronger (r=0.75) on an annual basis. In general, EPIC tended to underestimate annual DRP losses. This underestimation was apparently caused by the lack of an explicit mechanism to model broiler litter on the soil surface. These results suggested that additional work on the EPIC P submodel would be warranted to improve its simulation of surface application of broiler litter to grasslands.  相似文献   
18.
ABSTRACT: A previous modeling study used the Generalized Watershed Loading Functions (GWLF) model to simulate stream‐flow, and nutrient and sediment loads to Cannonsville Reservoir from the West Branch Delaware River (WBDR). We made several model revisions, calibrated key parameters, and tested the original GWLF model and a revised GWLF model using more recent data. Model revisions included: addition of unsaturated leakage between unsaturated and saturated subsurface reservoirs; revised timing of sediment export; inclusion of urban sediments and dissolved nutrients; tracking of particulate nutrients from point sources; and revised timing of septic system loads. The revision of sediment yield timing resulted in significant improvements in monthly sediment and particulate phosphorus predictions as compared to the original model. Addition of unsaturated leakage improved hydrologic predictions during low flow months. The other model changes improve realism without adding significant model complexity or data requirements. Goodness of fit of revised model predictions versus stream measurements, as measured by the Nash‐Sutcliff coefficient of model efficiency, exceeded 0.8 for streamflow‐0.7 for sediment yield and dissolved nitrogen (N) and 0.6 for particulate and dissolved phosphorus (P). The revised GWLF model, with limited calibration, provides reasonable estimates of monthly streamflow, and nutrient and sediment loads in the Cannonsville watershed.  相似文献   
19.
Recent works have indicated that climate change in the northeastern United States is already being observed in the form of shorter winters, higher annual average air temperature, and more frequent extreme heat and precipitation events. These changes could have profound effects on aquatic ecosystems, and the implications of such changes are less understood. The objective of this study was to examine how future changes in precipitation and temperature translate into changes in streamflow using a physically based semidistributed model, and subsequently how changes in streamflow could potentially impact stream ecology. Streamflow parameters were examined in a New York City water supply watershed for changes from model‐simulated baseline conditions to future climate scenarios (2081‐2100) for ecologically relevant factors of streamflow using the Indicators of Hydrologic Alterations tool. Results indicate that earlier snowmelt and reduced snowpack advance the timing and increase the magnitude of discharge in the winter and early spring (November‐March) and greatly decrease monthly streamflow later in the spring in April. Both the rise and fall rates of the hydrograph will increase resulting in increased flashiness and flow reversals primarily due to increased pulses during winter seasons. These shifts in timing of peak flows, changes in seasonal flow regimes, and changes in the magnitudes of low flow can all influence aquatic organisms and have the potential to impact stream ecology.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号