首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   1篇
  国内免费   2篇
安全科学   14篇
废物处理   14篇
环保管理   5篇
综合类   22篇
基础理论   21篇
污染及防治   44篇
评价与监测   20篇
社会与环境   5篇
  2023年   4篇
  2022年   3篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   7篇
  2017年   10篇
  2016年   9篇
  2015年   2篇
  2014年   10篇
  2013年   17篇
  2012年   11篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   6篇
  2005年   7篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1961年   1篇
排序方式: 共有145条查询结果,搜索用时 0 毫秒
141.
Redistribution of soil, nutrients, and contaminants is often driven by wind erosion in semiarid shrublands. Wind erosion depends on wind velocity (particularly during episodic, high-velocity winds) and on vegetation, which is generally sparse and spatially heterogeneous in semiarid ecosystems. Further, the vegetation cover can be rapidly and greatly altered due to disturbances, particularly fire. Few studies, however, have evaluated key temporal and spatial components of wind erosion with respect to (i) erosion rates on the scale of weeks as a function of episodic high-velocity winds, (ii) rates at unburned and burned sites, and (iii) within-site spatial heterogeneity in erosion. Measuring wind erosion in unburned and recently burned Chihuahuan desert shrubland, we found (i) weekly wind erosion was related more to daily peak wind velocities than to daily average velocities as consistent with our findings of a threshold wind velocity at approximately 7 m s(-1); (ii) greater erodibility in burned vs. unburned shrubland as indicated by erosion thresholds, aerodynamic roughness, and nearground soil movement; and (iii) burned shrubland lost soil from intercanopy and especially canopy patches in contrast to unburned shrubland, where soil accumulated in canopy patches. Our results are among the first to quantify post-fire wind erosion and highlight the importance of accounting for finer temporal and spatial variation in shrubland wind erosion. This finer-scale variation relates to semiarid land degradation, and is particularly relevant for predictions of contaminant resuspension and redistribution, both of which historically ignore finer-scale temporal and spatial variation in wind erosion.  相似文献   
142.
Whether anti-vibration gloves are effective in protecting against vibrations depends not only on the materials they are made of, but also on the parameters of the source of vibration. Depending on those parameters, the effectiveness of the same means of protection may be radically different. This article presents a methodology of using a neural network to test anti-vibration gloves. A network can map gloves in various conditions, i.e., for vibrations of various amplitudes and spectra, and for various forces exerted by the worker on a tool. Real, measured vibration signals produced by different tools were used in training a neural network. The results presented in this article prove that real properties of gloves are accurately represented by their models developed as a result of training a neural network.  相似文献   
143.
Polyacrylamide(PAM) used in sludge dewatering exists widely in high-solid anaerobic digestion. Acrylamide is registered in the list of chemicals demonstrating toxic, carcinogenic and mutagenic properties. Therefore, it is reasonable to ask about the mobility of such residual substances in the environment. The study was carried out to assess the impact of the mesophilic(39 ± 1°C) and thermophilic(54 ± 1°C) fermentation process on the level of acrylamide monomer(AMD) content in the dairy sludge. The material was analysed using high-performance liquid chromatography(HPLC) for quantification of AMD. The results indicate that the process of methane fermentation continues regardless of the temperature effects on the degradation of AMD in dairy sludge. The degree of reduction of acrylamide monomer for thermophilic fermentation is 100%, while for mesophilic fermentation it is91%. In practice, this means that biogas technology eliminates the risk of AMD migration to plant tissue. Moreover, it should be stressed that 90% of cumulative biogas and methane production was reached one week earlier under thermophilic conditions — the dynamics of the methanisation process were over 20% faster.  相似文献   
144.
We studied the effects of tree species on leaf litter decomposition and forest floor dynamics in a common garden experiment of 14 tree species (Abies alba, Acer platanoides, Acer pseudoplatanus, Betula pendula, Carpinus betulus, Fagus sylvatica, Larix decidua, Picea abies, Pinus nigra, Pinus sylvestris, Pseudotsuga menziesii, Quercus robur, Quercus rubra, and Tilia cordata) in southwestern Poland. We used three simultaneous litter bag experiments to tease apart species effects on decomposition via leaf litter chemistry vs. effects on the decomposition environment. Decomposition rates of litter in its plot of origin were negatively correlated with litter lignin and positively correlated with mean annual soil temperature (MAT(soil)) across species. Likewise, decomposition of a common litter type across all plots was positively associated with MAT(soil), and decomposition of litter from all plots in a common plot was negatively related to litter lignin but positively related to litter Ca. Taken together, these results indicate that tree species influenced microbial decomposition primarily via differences in litter lignin (and secondarily, via differences in litter Ca), with high-lignin (and low-Ca) species decomposing most slowly, and by affecting MAT(soil), with warmer plots exhibiting more rapid decomposition. In addition to litter bag experiments, we examined forest floor dynamics in each plot by mass balance, since earthworms were a known component of these forest stands and their access to litter in litter bags was limited. Forest floor removal rates estimated from mass balance were positively related to leaf litter Ca (and unrelated to decay rates obtained using litter bags). Litter Ca, in turn, was positively related to the abundance of earthworms, particularly Lumbricus terrestris. Thus, while species influence microbially mediated decomposition primarily through differences in litter lignin, differences among species in litter Ca are most important in determining species effects on forest floor leaf litter dynamics among these 14 tree species, apparently because of the influence of litter Ca on earthworm activity. The overall influence of these tree species on leaf litter decomposition via effects on both microbial and faunal processing will only become clear when we can quantify the decay dynamics of litter that is translocated belowground by earthworms.  相似文献   
145.
Recent studies on climate responses in ectothermic (cold-blooded) vertebrates have been few in number and focussed on phenology rather than morphology. According to Bergmann’s rule, endothermic (warm-blooded) vertebrates from cooler climates tend to be larger than congeners from warmer regions. Although amphibians are ectothermic vertebrates, weather and climatic conditions may also impact on their morphology, and thereby affect their survival rates and population dynamics. In this paper, we show, in a unique long-term study during the period 1963–2003 in an agricultural landscape in western Poland, that the body length of two water frog parental species (males of both Rana ridibunda and R. lessonae) increased significantly. However, their hybridogenetic hybrid R. esculenta did not show similar changes. A significant relationship with a large-scale climatic factor, the winter North Atlantic Oscillation index, was found positive for R. ridibunda males and R. lessonae females, and negative for R. esculenta females. Our findings, the first for amphibians, are consistent with other studies reporting that recent climate change has affected the morphology of animals. However, we also show that changes in amphibian phenotype linked to climate may vary independently between (even very similar) species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号