首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28464篇
  免费   258篇
  国内免费   270篇
安全科学   753篇
废物处理   1140篇
环保管理   3596篇
综合类   5388篇
基础理论   7253篇
环境理论   10篇
污染及防治   7265篇
评价与监测   1927篇
社会与环境   1489篇
灾害及防治   171篇
  2022年   226篇
  2021年   222篇
  2020年   175篇
  2019年   232篇
  2018年   395篇
  2017年   396篇
  2016年   620篇
  2015年   434篇
  2014年   697篇
  2013年   2138篇
  2012年   830篇
  2011年   1143篇
  2010年   929篇
  2009年   958篇
  2008年   1159篇
  2007年   1167篇
  2006年   1101篇
  2005年   902篇
  2004年   957篇
  2003年   899篇
  2002年   829篇
  2001年   1166篇
  2000年   770篇
  1999年   499篇
  1998年   357篇
  1997年   346篇
  1996年   373篇
  1995年   408篇
  1994年   419篇
  1993年   327篇
  1992年   379篇
  1991年   360篇
  1990年   389篇
  1989年   348篇
  1988年   320篇
  1987年   256篇
  1986年   264篇
  1985年   274篇
  1984年   286篇
  1983年   280篇
  1982年   285篇
  1981年   280篇
  1980年   212篇
  1979年   234篇
  1978年   217篇
  1977年   186篇
  1975年   189篇
  1974年   201篇
  1973年   180篇
  1972年   206篇
排序方式: 共有10000条查询结果,搜索用时 386 毫秒
831.
A variety of seals is used to close bags. Each seal has advantages and disadvantages. For shop assistants sealing bags could be a repetitive physically demanding action. Opening and closing the bags again can cause some discomfort or annoyance for consumers. Besides, it is an activity which can endanger safety, i.e., knives being used in opening, children swallowing the systems of sealing. To prevent these problems a new sealing system was developed. In this paper the opinion of shop assistants, consumers and experts on several bag sealing systems was studied. It appeared that for sealing plastic bags, adhesive tape with paper is the best out of 4 systems, closely followed by adhesive tape. It is discussed that for the elderly, there is still room for improvement in opening bag seals.  相似文献   
832.
The industrialization of agriculture not only alters the ways in which agricultural production occurs, but it also impacts the decisions farmers make in important ways. First, constraints created by the economic environment of farming limit what options a farmer has available to him. Second, because of the industrialization of agriculture and the resulting economic pressures it creates for farmers, the fact that decisions are constrained creates new ethical challenges for farmers. Having fewer options when faced with severe economic pressures is a very different situation for farmers than having many options available. We discuss the implications of constrained choice and show that it increases the likelihood that farmers will consider unethical behavior.  相似文献   
833.
834.
Recent research has focused on establishing the values of preserving biodiversity both in agriculture and in less managed ecosystems, and in showing the importance of the role of cultural diversity in preserving biodiversity in food production systems. A study of the philosophy embedded in cultural systems can reveal the importance of the technological information for preserving genetic biodiversity contained in such systems and can be used to support arguments for the protection/preservation of cultural diversity. For example, corn or maize can serve as a paradigm of Native American thinking and can provide one of the few areas from which common philosophical conceptions can emerge. An examination of the cultivation of corn or maize as an agricultural activity and as a cultural activity in Native American literature reveals a philosophy that recognizes the importance of biodiversity and provides techniques for its preservation. Corn, and the food and the materials derived from it, is something thought out, not by specialists, but by the entire tribe and its ancestors, even if this thinking is done within what we might consider a framework of highly mythical notions. Importantly, this framework yields an understanding of both the genetics and nutrition of corn. A survey of these mythical notions (myths and stories) and agricultural practices makes this thought explicit and exemplifies the value of cultural diversity and biodiversity.  相似文献   
835.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
836.
Beef cattle feedlots face serious environmental challenges associated with manure management, including greenhouse gas, odor, NH3, and dust emissions. Conditions affecting emissions are poorly characterized, but likely relate to the variability of feedlot surface moisture and manure contents, which affect microbial processes. Odor compounds, greenhouse gases, nitrogen losses, and dust potential were monitored at six moisture contents (0.11, 0.25, 0.43, 0.67, 1.00, and 1.50 g H2O g(-1) dry matter [DM]) in three artificial feedlot soil mixtures containing 50, 250, and 750 g manure kg(-1) total (manure + soil) DM over a two-week period. Moisture addition produced three microbial metabolisms: inactive, aerobic, and fermentative at low, moderate, and high moisture, respectively. Manure content acted to modulate the effect of moisture and enhanced some microbial processes. Greenhouse gas (CO2, N2O, and CH4) emissions were dynamic at moderate to high moisture. Malodorous volatile fatty acid (VFA) compounds did not accumulate in any treatments, but their persistence and volatility varied depending on pH and aerobic metabolism. Starch was the dominant substrate fueling both aerobic and fermentative metabolism. Nitrogen losses were observed in all metabolically active treatments; however, there was evidence for limited microbial nitrogen uptake. Finally, potential dust production was observed below defined moisture thresholds, which were related to manure content of the soil. Managing feedlot surface moisture within a narrow moisture range (0.2-0.4 g H2O g(-1) DM) and minimizing the accumulation of manure produced the optimum conditions that minimized the environmental impact from cattle feedlot production.  相似文献   
837.
The moisture and manure contents of soils at cattle feedlot surfaces vary spatiotemporally and likely are important factors in the persistence of Escherichia coli O157 in these soils. The impacts of water content (0.11-1.50 g H2O g(-1) dry feedlot surface material [FSM]) and manure level (5, 25, and 75% dry manure in dry FSM) on E. coli O157:H7 in feedlot soils were evaluated. Generally, E. coli O157:H7 numbers either persisted or increased at all but the lowest moisture levels examined. Manure content modulated the effect of water on E. coli growth; for example, at water content of 0.43 g H2O g(-1) dry FSM and 25% manure, E. coli O157:H7 increased by 2 log10 colony forming units (CFU) g(-1) dry FSM in 3 d, while at 0.43 g H2O g(-1) dry FSM and 75% manure, populations remained stable over 14 d. Escherichia coli and coliform populations responded similarly. In a second study, the impacts of cycling moisture levels and different drying rates on naturally occurring E. coli O157 in feedlot soils were examined. Low initial levels of E. coli O157 were reduced to below enumerable levels by 21 d, but indigenous E. coli populations persisted at >2.50 log10 CFU g(-1) dry FSM up to 133 d. We conclude that E. coli O157 can persist and may even grow in feedlot soils, over a wide range of water and manure contents. Further investigations are needed to determine if these variables can be manipulated to reduce this pathogen in cattle and the feedlot environment.  相似文献   
838.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   
839.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
840.
DIMBOA (3,4-dihydro-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), a major benzoxazinone of Poaceae plants, was isolated and purified from corn seedlings. The effect of isolated and purified DIMBOA on the degradation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and its toxic breakdown products, desethylatrazine [2-chloro-4-amino-6-(isopropylamino)-s-triazine; DEA] and desisopropylatrazine [2-chloro-4-(ethylamino)-6-amino-s-triazine; DIA], was studied in the absence of plants using batch experiments, while the effect of corn root exudates on these compounds was determined in hydroponic experiments. Degradation experiments were performed in the presence and absence of 50 microM, 1 mM, or 5 mM DIMBOA resulting in ratios of DIMBOA to pesticide of 1:1, 20:1, and 100:1. We observed a 100% degradation of atrazine to hydroxyatrazine within 48 h at a ratio of DIMBOA to atrazine of 100:1. DIMBOA had the largest effect on atrazine, while it was about three times less effective on DEA and DIA. Corn (Zea mays L. cv. LG 2185) was exposed to 10 mg L(-1) of either atrazine, DEA, or DIA for 11 d in a growth chamber experiment. Up to 4.3 micromol L(-1) d(-1) of hydroxyatrazine were formed in the nutrient solutions by plants exposed to atrazine, while the formation of hydroxylated metabolites from plants exposed to DEA and DIA was smaller and also delayed. The formation of hydroxylated metabolites increased in the solution with plant age in all atrazine, DEA, and DIA treatments. HMBOA (3,4-dihydro-2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), the lactam precursor of DIMBOA, and a tentatively identified derivative of MBOA (2,3-dihydro-6-methoxy-benzoxazol-2-one) were detected in the corn root exudates. Mass balance calculations revealed that up to 30% of the disappearance of atrazine and DEA, and up to 10% of DIA removal from the solution medium in our study could be explained by the formation of hydroxylated metabolites in the solution itself. Our results show that higher plants such as corn have the potential to promote the hydrolysis of triazine residues in soils by exudation of benzoxazinones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号