首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   5篇
  国内免费   4篇
安全科学   1篇
废物处理   2篇
环保管理   27篇
综合类   5篇
基础理论   4篇
污染及防治   6篇
评价与监测   9篇
社会与环境   5篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   10篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   7篇
  2012年   4篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
排序方式: 共有59条查询结果,搜索用时 31 毫秒
41.
Abstract: In this study, a set of nitrogen reduction strategies were modeled to evaluate the feasibility of improving water quality to meet total maximum daily loads (TMDLs) in two agricultural watersheds. For this purpose, a spatial‐process model was calibrated and used to predict monthly nitrate losses (1994‐96) from Sand and Bevens Creek watersheds located in south‐central Minnesota. Statistical comparison of predicted and observed flow and nitrate losses gave r2 coefficients of 0.75 and 0.70 for Sand Creek watershed and 0.72 and 0.67 for Bevens Creek watershed, respectively. Modeled alternative agricultural management scenarios included: six different N application rates over three application timings and three different percentages of crop land with subsurface drainage. Predicted annual nitrate losses were then compared with nitrate TMDLs assuming a 30% reduction in observed nitrate losses is required. Reductions of about 33 (8.6 to 5.8 kg/ha) and 35% (23 to 15 kg/ha) in existing annual nitrate losses are possible for Sand and Bevens Creek watersheds, respectively, by switching the timing of fertilizer application from fall to spring. Trends towards increases in tile‐drained crop land imply that attaining nitrate TMDLs in future may require other alternative management practices in addition to fertilizer management such as partial conversion of crop land to pasture.  相似文献   
42.
IntroductionCoffeegreenbeansCleaningandwashingWashingeffluentRoastingandgrindingRoastandgroundcoffeeChicorycubesCoffee chicorymixtureExtractionScrewpressliquorCentrifugationSludgeblowdownConcentrationCondensateSpraydryingandpackingFig .1 Schematicsofco…  相似文献   
43.
There is an increasing need to strategize and plan irrigation systems under varied climatic conditions to support efficient irrigation practices while maintaining and improving the sustainability of groundwater systems. This study was undertaken to simulate the growth and production of soybean [Glycine max (L.)] under different irrigation scenarios. The objectives of this study were to calibrate and validate the CROPGRO‐Soybean model under Texas High Plains’ (THP) climatic conditions and to apply the calibrated model to simulate the impacts of different irrigation levels and triggers on soybean production. The methodology involved combining short‐term experimental data with long‐term historical weather data (1951–2012), and use of mechanistic crop growth simulation algorithms to determine optimum irrigation management strategies. Irrigation was scheduled based on five different plant extractable water levels (irrigation threshold [ITHR]) set at 20%, 35%, 50%, 65%, and 80%. The calibrated model was able to satisfactorily reproduce measured leaf area index, biomass, and evapotranspiration for soybean, indicating it can be used for investigating different strategies for irrigating soybean in the THP. Calculations of crop water productivity for biomass and yield along with irrigation water use efficiency indicated soybean can be irrigated at ITHR set at 50% or 65% with minimal yield loss as compared to 80% ITHR, thus conserving water and contributing toward lower groundwater withdrawals. Editor's note: This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
44.
The people inhabiting the mountains of the Central Himalayan region of India are heavily dependent on their immediate natural resources for their survival. However, this resource-poor mountain ecosystem is gradually becoming unable to provide a minimum standard of living to its continually growing population. In this ecosystem, human population is doubling every 27–30 years, against the declining resource base, particularly forests. Forest are disappearing both quantitatively and qualitatively. Against the requirement of 18 ha of forest land to maintain production in 1 ha of cultivated land, the ratio of forests to cultivated land is only 1.33: 1. The present production from grasslands supports 8 units of livestock, against the ideal 2 units, and the gap between the demand and deficit of fodder is more than 5-fold. Loss of vegetative cover is resulting in drying up of water resources, compelling the women to walk longer distances to collect water. This ecological deterioration, apart from human growth and interference, is compounded by mountain specificities such as inaccessibility, fragility, marginality, diversity, niche and adaptability. The specificities manifest in isolation, distance, poor communication, limited mobility, etc., resulting in limited external linkages and replication of external experiences, and slow pace of development. They, therefore, restrict options for economic growth, effecting poverty and affecting the quality of life of the people of the region. Poverty, in this mountain ecosystem cannot be understood and assessed independent of ecological wealth and would better be termed as ecological poverty. The development efforts to be effective in alleviating poverty here, should take into account mountain specificities and incorporate options which have larger human dimensions, such as mechanisms for population control, socio-economic and cultural conditioning, indigenous knowledge systems of the local people and simple technologies that are already in practice or have potential and are based on least external inputs.  相似文献   
45.

Annual and seasonal rainfall trends in the Limbang River Basin (LRB), located in the equatorial tropics of Malaysian Borneo, have been characterised through Mann-Kendall and Spearman’s Rho non-parametric tests. Rainfall from 13 rain gauge stations in the LRB for the period 1948–2016 was examined in the present study. Basic statistical analysis of rainfall in the region indicates normal distribution, low missing percentage and homogenous characteristics of precipitation. Annual and seasonal rainfall in the LRB shows spatial variation while considering different rain gauge stations. In annual rainfall, eight stations showed a decreasing trend and five stations showed an increasing trend. Rain gauge stations which showed a statistically significant increase in annual rainfall were Limbang DID (2.77 and 2.85 mm/year) and Long Napir (3.65 and 3.77 mm/year). In recognising the two annual monsoon seasons in this area, a significant increase in rainfall was noticed in Long Napir (2.79 and 2.88 mm/year) during the Southwest monsoon (SWM) period. During the Northeast monsoon (NEM), along with Long Napir (3.90 and 3.95 mm/year), Limbang DID (2.86 and 3.02 mm/year), Pandaruan (1.82 and 1.87 mm/year) and Medamit Nanga (1.93 and 2.00 mm/year) also showed a significant increase in rainfall. At the same time, a distinct trend was noticed in rainfall amounts during the inter-monsoon (IM) periods. During the first inter-monsoon month (April), seven rain gauge stations showed an increasing trend in rainfall, whereas in the second inter-monsoon month (October), nine stations showed a decreasing rainfall trend. In April, Long Napir (1.86 and 1.95 mm/year) indicated a significant increasing trend, whereas in the month of October, the rain gauge station at Ukong showed a significant decreasing trend (− 2.45 and − 2.37 mm/year). Though minor spatial changes in trend characteristics were observed among the rain gauge stations, the LRB as a whole showed a consistent increasing (significant and non-significant) trend in annual and seasonal rainfall.

  相似文献   
46.
This work investigated the optimisation of biodiesel production from waste cooking oil (WCO) and palm oil using a two-step transesterification process for WCO and base catalysed transesterification for palm oil. Transesterification reactions were carried out to investigate the effects of prepared catalyst CaO, methanol/WCO and methanol/palm oil ratio and temperature on the yield of biodiesel. A series of experiments were conducted to determine the best conditions for biodiesel production, using methanol/oil ratio between 4:1 and 11:1 and contact time varying between 2 and 4 h. Biodiesel yield of around 90 and 70% was obtained for palm and waste cooking oil at the methanol/oil ratios of 6:1 and 8:1 at temperature of 60 °C for reaction time of 4 h using prepared CaO as catalyst. The physicochemical properties of palm and WCO biodiesel were carried out using standard methods, while the fatty acid profile was determined using gas chromatography. The investigation concludes that biodiesel obtained from palm and waste cooking oil was within the specified limit.  相似文献   
47.
An investigation was conducted to characterize the agricultural accidents, their magnitude, causes, severity and economic consequences in one of the states of north eastern region of India, Arunachal Pradesh. The accident data for 6 years between years 2000 and 2005 were collected by conducting a survey and personal interview of the victims in 42 selected villages of 4 districts. Agricultural accident incident rate was 6.39 per 1000 workers/year. All the accidents were non-fatal. Farm implement-related accidents accounted for 40% of the accidents. Slashing of shrubs accounted for one-third of the accidents causing cut and hit injuries of moderate severity. Twenty-five per cent of the accidents occurred on the way to or from the field leading to severe or serious injuries. Two-third of the accidents occurred within 4 h of start of work. Thirty-three per cent of the victims were 40–49 years of age. Based on the analysis, both passive and active measures have been suggested to minimize or prevent the occurrence of agricultural accidents.  相似文献   
48.
Recent severe drought events have occurred over the Ogallala Aquifer region (OAR) during the period 2011–2015, creating significant impacts on water resources and their use in regional environmental and economic systems. The changes in terrestrial water storage (TWS), as indicated by the Gravity Recovery and Climate Experiment (GRACE), reveals a detailed picture of the temporal and spatial evolution of drought events. The observations by GRACE indicate the worst drought conditions occurred in September 2012, with an average TWS deficit of ~8 cm in the northern OAR and ~11 cm in the southern OAR, consistent with precipitation data from the Global Precipitation Climatology Project. Comparing changes in TWS with precipitation shows the TWS changes can be predominantly attributable to variations in precipitation. Power spectrum and squared wavelet coherence analysis indicate a significant correlation between TWS change and the El Nino‐Southern Oscillation, and the influence of equatorial Pacific sea surface temperatures on TWS change is much stronger in the southern OAR than the northern OAR. The results of this study illustrate the value of GRACE in not just the diagnosis of significant drought events, but also in possibly improving the predictive power of remote signals that are impacted by nonregional climatic events (El Nino), ultimately leading to improved water resource management applications on a regional scale. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
49.
The goal of this study was to develop a methodology for generating storm hydrographs at a watershed scale based on daily runoff estimates from a field scale model. The methodology was evaluated on a small agricultural watershed using the ADAPT field scale process model. A comparison of observed and predicted peak flows for 11 of the largest events that occurred in a three year period gave r2 values of 0.84, 0.82, and 0.81 when the watershed was subdivided into 1, 5, and 10 sub watersheds. However, all other statistical measures improved when the watershed was subdivided into at least five sub watersheds. Guidelines need to be developed on the use of the procedure but it first needs to be evaluated on several watersheds that exhibit a range in sizes, land uses, slopes, and soil properties.  相似文献   
50.
Road dust contain potentially toxic pollutants originating from a range of anthropogenic sources common to urban land uses and soil inputs from surrounding areas. The research study analysed the mineralogy and morphology of dust samples from road surfaces from different land uses and background soil samples to characterise the relative source contributions to road dust. The road dust consist primarily of soil derived minerals (60%) with quartz averaging 40-50% and remainder being clay forming minerals of albite, microcline, chlorite and muscovite originating from surrounding soils. About 2% was organic matter primarily originating from plant matter. Potentially toxic pollutants represented about 30% of the build-up. These pollutants consist of brake and tire wear, combustion emissions and fly ash from asphalt. Heavy metals such as Zn, Cu, Pb, Ni, Cr and Cd primarily originate from vehicular traffic while Fe, Al and Mn primarily originate from surrounding soils. The research study confirmed the significant contribution of vehicular traffic to dust deposited on urban road surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号