首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11970篇
  免费   242篇
  国内免费   83篇
安全科学   373篇
废物处理   566篇
环保管理   1679篇
综合类   2459篇
基础理论   2840篇
环境理论   5篇
污染及防治   3011篇
评价与监测   690篇
社会与环境   562篇
灾害及防治   110篇
  2022年   92篇
  2021年   101篇
  2019年   103篇
  2018年   202篇
  2017年   157篇
  2016年   274篇
  2015年   210篇
  2014年   296篇
  2013年   1013篇
  2012年   333篇
  2011年   462篇
  2010年   384篇
  2009年   419篇
  2008年   456篇
  2007年   508篇
  2006年   453篇
  2005年   365篇
  2004年   385篇
  2003年   394篇
  2002年   359篇
  2001年   447篇
  2000年   332篇
  1999年   216篇
  1998年   116篇
  1997年   124篇
  1996年   108篇
  1995年   154篇
  1994年   152篇
  1993年   124篇
  1992年   131篇
  1991年   151篇
  1990年   120篇
  1989年   127篇
  1988年   133篇
  1987年   114篇
  1986年   83篇
  1985年   99篇
  1984年   124篇
  1983年   126篇
  1982年   123篇
  1981年   97篇
  1980年   93篇
  1979年   106篇
  1978年   89篇
  1977年   84篇
  1976年   78篇
  1975年   90篇
  1974年   101篇
  1972年   69篇
  1965年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Accurate emission measurement of highly volatile chemicals such as methyl bromide (MeBr) is a crucial step in assessing their potential for environmental contamination. Use of flux chambers is a simple method for measuring emission rate under field conditions. To validate the applicability of a dynamic flow-through chamber for measuring MeBr emission, we provide a complete presentation of calibration and testing of the chamber. The calibration was made under a controlled system subject to ambient temperature changes. Two field experiments were conducted to test the chamber for measuring MeBr flux under conditions similar to commercial soil fumigation practices. In both the calibration and the two field experiments, the chamber provided accurate emission estimates. The maximum mass balance error was < 10% which is comparable to the micrometerological method. Because of its simplicity, we believe this dynamic flux chamber can be used reliably in quantifying the emission dynamics of highly volatile chemicals such as MeBr.  相似文献   
992.
993.
The role of nucleating particulates in the formation of photochemical aerosols has been studied in a steady, laminar flow of ultrafiltered air containing NO2 and octene-1 in the concentration range of (30 to 170 ppm) when subjected to intense irradiation under isothermal conditions. The particulates consisted of monodisperse polystyrene latex (d = 0.36 μ.) in concentrations similar to those in the atmosphere (6 × 101 to 3 × 103 cm–3); the irradiation intensity varied between (6 to 40 × 103 lumen/liter) and the mean exposure duration between 30 and 180 sec. Samples of the flow prior to and after its photoactivation were withdrawn either by an Aerosol Spectrometer (AS) or by a Royco Aerosol Photometer (PH). While these indications refer thus to the same system, they differ, because the photometric data include all colloidal components in the airborne state, whereas the counts obtained from the AS deposits refer only to the nucleated latex particles. The following pattern becomes evident: The photochemical reaction yields fractional products (less than three percent) which have the tendency to agglomerate (or polymerize) due to their relatively low volatility—independent of the presence or absence of nucleating particulates. In their presence, this reaction becomes kinetically more probable and thus faster, hence the accumulant formation occurs preferably on the nuclei and causes their growth such that, e.g., a 10-fold higher nuclei concentration will produce under the same conditions 10 times the accumulant mass while autonucleation is suppressed. The growth process appears thus principally different from that of fog formation by H2O-condensation, whereas for identical super saturation it is inversely proportional to the nuclear concentration. In the absence of nuclei autonucleation, i.e., self-agglomeration, occurs at a much lesser reaction rate and higher photon demand. The growth rate of the nuclei, when present, depends on the concentration of the oxidation catalyst (NO2), its interaction with the nuclei surface is indicated. Under identical conditions the mass of nuclear accumulant is directly proportional to the concentration of the reactive hydrocarbon, while the growth rate depends on the light intensity and the exposure duration. The findings indicate that density and nature of particulate matter present in an air mass prior or during photo-activation are—aside from the chemical reactant levels—of major significance in aerosol formation.  相似文献   
994.
995.
A volume of sand containing coal tar creosote was emplaced below the water table at CFB Borden to investigate natural attenuation processes for complex biodegradable mixtures. Coal tar creosote is a mixture of more than 200 polycyclic aromatic hydrocarbons, heterocyclic compounds and phenolic compounds. A representative group of seven compounds was selected for detailed study: phenol, m-xylene, naphthalene, phenanthrene, 1-methylnaphthalene, dibenzofuran and carbazole. Movement of groundwater through the source led to the development of a dissolved organic plume, which was studied over a 4-year period. Qualitative plume observations and mass balance calculations indicated two key conclusions: (1) compounds from the same source can display distinctly different patterns of plume development and (2) mass transformation was a major influence on plume behaviour for all observed compounds.  相似文献   
996.
Particulate matter (PM) emissions from stationary combustion sources burning coal, fuel oil, biomass, and waste, and PM from internal combustion (IC) engines burning gasoline and diesel, are a significant source of primary particles smaller than 2.5 microns (PM2.5) in urban areas. Combustion-generated particles are generally smaller than geologically produced dust and have unique chemical composition and morphology. The fundamental processes affecting formation of combustion PM and the emission characteristics of important applications are reviewed. Particles containing transition metals, ultrafine particles, and soot are emphasized because these types of particles have been studied extensively, and their emissions are controlled by the fuel composition and the oxidant-temperature-mixing history from the flame to the stack. There is a need for better integration of the combustion, air pollution control, atmospheric chemistry, and inhalation health research communities. Epidemiology has demonstrated that susceptible individuals are being harmed by ambient PM. Particle surface area, number of ultrafine particles, bioavailable transition metals, polycyclic aromatic hydrocarbons (PAH), and other particle-bound organic compounds are suspected to be more important than particle mass in determining the effects of air pollution. Time- and size-resolved PM measurements are needed for testing mechanistic toxicological hypotheses, for characterizing the relationship between combustion operating conditions and transient emissions, and for source apportionment studies to develop air quality plans. Citations are provided to more specialized reviews, and the concluding comments make suggestions for further research.  相似文献   
997.
Phytoremediation of polyaromatic hydrocarbons, anilines and phenols   总被引:12,自引:0,他引:12  
Phytoremediation technologies based on the combined action of plants and the microbial communities that they support within the rhizosphere hold promise in the remediation of land and waterways contaminated with hydrocarbons but they have not yet been adopted in large-scale remediation strategies. In this review plant and microbial degradative capacities, viewed as a continuum, have been dissected in order to identify where bottle-necks and limitations exist. Phenols, anilines and polyaromatic hydrocarbons (PAHs) were selected as the target classes of molecule for consideration, in part because of their common patterns of distribution, but also because of the urgent need to develop techniques to overcome their toxicity to human health. Depending on the chemical and physical properties of the pollutant, the emerging picture suggests that plants will draw pollutants including PAHs into the plant rhizosphere to varying extents via the transpiration stream. Mycorrhizosphere-bacteria and -fungi may play a crucial role in establishing plants in degraded ecosystems. Within the rhizosphere, microbial degradative activities prevail in order to extract energy and carbon skeletons from the pollutants for microbial cell growth. There has been little systematic analysis of the changing dynamics of pollutant degradation within the rhizosphere; however, the importance of plants in supplying oxygen and nutrients to the rhizosphere via fine roots, and of the beneficial effect of microorganisms on plant root growth is stressed. In addition to their role in supporting rhizospheric degradative activities, plants may possess a limited capacity to transport some of the more mobile pollutants into roots and shoots via fine roots. In those situations where uptake does occur (i.e. only limited microbial activity in the rhizosphere) there is good evidence that the pollutant may be metabolised. However, plant uptake is frequently associated with the inhibition of plant growth and an increasing tendency to oxidant stress. Pollutant tolerance seems to correlate with the ability to deposit large quantities of pollutant metabolites in the 'bound' residue fraction of plant cell walls compared to the vacuole. In this regard, particular attention is paid to the activities of peroxidases, laccases, cytochromes P450, glucosyltransferases and ABC transporters. However, despite the seemingly large diversity of these proteins, direct proof of their participation in the metabolism of industrial aromatic pollutants is surprisingly scarce and little is known about their control in the overall metabolic scheme. Little is known about the bioavailability of bound metabolites; however, there may be a need to prevent their movement into wildlife food chains. In this regard, the application to harvested plants of composting techniques based on the degradative capacity of white-rot fungi merits attention.  相似文献   
998.
Data are presented for the first systematic measurements of biogenic sulfur gas flux from the major soil orders within the eastern and southeastern United States. Sulfur flux samples were collected and analyzed on-site during the fall of 1977, spring and summer of 1978 and summer of 1979. A total of 27 sampling locales in 17 states were examined. Eight additional sites were visited in 1980.

At some locales, two to four soils were examined, providing an even broader sampling of the soil orders. Three of the locales were revisited two or three times during the course of the study to establish the influence of seasonal climatology upon the measured emission rates and chemical composition of the sulfur flux mixtures.

The sulfur gas enhancement of sulfur-free sweep air passing through dynamic emission flux chambers placed over selected sampling areas was determined by combined cryogenic enrichment sampling and wall-coated, open tubular, capillary column, cryogenic gas chromatography (WCOT/GC) using a sulfur selective, flame photometric detector (FPD).

Sulfur gas mixtures varied with soil order, ambient temperature, insolation, soil moisture, cultivation, and vegetative cover. Statistical analyses indicated strong temperature and soil order relationships for sulfur emissions from soils.

Fluxes ranged from 0.001 g to 1940 g of total sulfur as S/m2/yr. The calculated mean annual sulfur flux, weighted by soil order, was 0.03 g S/m2/yr for the study land area, or 110,872 metric tons (mT). The estimated annual average sulfur flux increased from 65 mT per 6400 km2 for the land grids in the northernmost east-west grid tier to an average 1800 mT for the land grids in the southern Florida grid tiers.

This systematic sampling of major soils provides a much broader data base for estimating biogenic sulfur flux than previously reported for isolated intertidal sites, and presents the first sulfur flux estimates for inland soils which make up approximately 93% of the land of the eastern United States.  相似文献   
999.
Abstract

An improved drift shield for attaching to the lance of conventional knapsack sprayer to reduce wind induced drift and operator exposure was designed and tested. The drift shield consists of a conical wire frame covered with polythene and has an annular opening at the point of attachment to the lance which allows air to be drawn into the shield while spraying. Tests conducted with winds in the range of 1.25–5.75 m/s show that wind can increase the width of spray swath from an unshielded lance, up to 4.3 times the normal swath in no‐wind condition. Use of a conventional shield contained the swath width within 3.5 times and the improved shield restricted the swath width to 3.1 times the normal swath. Spray deposit from an unshielded lance, within the normal swath decreased to as low as 45%, due to wind effects. However, use of the conventional, and the improved shields enhanced the spray deposit to 54.2% and 68%, respectively. The improved drift shield improved the spray pattern displacement (SPD) significantly (P<0.05) compared with the conventional shield and the unshielded lance when the wind speed exceeded 1.25 m/s. The improved shield decreased the off target drift by as much as 63% compared with the unshielded spray. It also decreased the quantity of pesticide deposit on the operator's body by 41–84% and thereby reduced exposure and improved safety.  相似文献   
1000.
Long-term dynamics (1960-1997) of the cladoceran species Bosmina coregoni maritima, Evadne nordmanni and Podon spp. are described for the Gdansk Deep and the Gotland Basin (Central Baltic Sea). By using correlation analyses on seasonal time-series, the influence of temperature and salinity on the abundance of cladoceran species was investigated. A clear affinity to higher temperature was found for B. coregoni maritima in summer as well as for E. nordmanni and Podon spp. in spring. In addition to temperature, association tests with salinity revealed besides species-specific preferences, regional and temporal differences. Contrary to B. coregoni maritima, both other species were positively associated to salinity in summer and autumn in the Gdansk Deep. In the Gotland Basin only E. nordmanni was positively correlated to salinity in autumn. Differences in the response to hydrographic variables are possibly stage specific, i.e. between resting eggs and adults, or due to a different adaptation to the abiotic environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号