首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   2篇
  国内免费   14篇
安全科学   10篇
废物处理   51篇
环保管理   17篇
综合类   27篇
基础理论   43篇
污染及防治   78篇
评价与监测   31篇
社会与环境   18篇
  2024年   1篇
  2023年   14篇
  2022年   34篇
  2021年   25篇
  2020年   2篇
  2019年   6篇
  2018年   12篇
  2017年   20篇
  2016年   18篇
  2015年   13篇
  2014年   10篇
  2013年   29篇
  2012年   20篇
  2011年   23篇
  2010年   11篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有275条查询结果,搜索用时 500 毫秒
251.
252.
Filamentous fungi are able to accumulate significant amount of metals from their environment. The potential of fungal biomass as agents for biosorption of heavy metals from contaminated sediments is currently receiving attention. In the present study, a total of 41 isolates of filamentous fungi obtained from the sediment of the Langat River, Selangor, Malaysia were screened for their tolerance and uptake capability of copper (Cu) and lead (Pb). The isolates were identified as Aspergillus niger, A. fumigatus, Trichoderma asperellum, Penicillium simplicissimum and P. janthinellum. A. niger and P. simplicissimum, were able to survive at 1000 mg/L of Cu(II) concentration on Potato Dextrose Agar (PDA) while for Pb, only A. niger survived at 5000 mg/L concentration. The results showed that A. niger, P. simplicissimum and T. asperellum have a better uptake capacity for Pb compared to Cu and the findings indicated promising biosorption of Cu and Pb by these filamentous fungi from aqueous solution. The present study was also determined the maximum removal of Cu(II) and Pb(II) that was performed by A. niger. The metal removal which occurred at Cu(II) 200 mg/L was (20.910 0.581) mg/g and at 250 mg/L of Pb(II) was (54.046 0.328) mg/g.  相似文献   
253.
254.
255.
Bacterial strain RV9 recovered from greengram nodules tolerated 2400 μg/mL of hexaconazole and was identified by 16 S rDNA sequence analysis as Bradyrhizobium japonicum(KY940048). Strain RV9 produced IAA(61.6 μg/mL), ACC deaminase(51.7 mg/(protein·hr)), solubilized TCP(105 μg/mL), secreted 337.6 μg/mL EPS, and produced SA(52.2 μg/mL) and 2,3-DHBA(28.3 μg/mL). Exopolysaccharides produced by strain RV9 was quantified and characterized by SEM, AFM, EDX and FTIR. Beyond tolerance limit,hexaconazole caused cellular impairment and reduced the viability of strain RV9 revealed by SEM and CLSM. Hexaconazole distorted the root tips and altered nodule structure leading thereby to reduction in the performance of greengram. Also, the level of antioxidant enzymes, proline, TBARS, ROS and cell death was increased in hexaconazole treated plants.CLSM images revealed a concentration dependent increase in the characteristic green and blue fluorescence of hexaconazole treated roots. The application of B. japonicum strain RV9 alleviated the fungicide toxicity and improved the measured plant characteristics. Also,rhizobial cells were localized inside tissues as revealed by CLSM. Colonization of B.japonicum strain RV9 decreased the levels of CAT, POD, APX, GPX and TBARS by 80%, 5%,13%, 13% and 19%, respectively over plants grown at 80 μg/(hexaconazole·kg) soil. The ability to detoxify hexaconazole, colonize plant tissues, secrete PGP bioactive molecules even under fungicide pressure and its unique ability to diminish oxidative stress make B.japonicum an attractive choice for remediation of fungicide polluted soils and to concurrently enhance greengram production under stressed environment.  相似文献   
256.
Co-composting of poultry manure and rubber wood sawdust was performed with the ratio of 2:1 (V/V) for a period of 60 days. An investigation was carried out to study the extracellular enzymatic activities and structural degradation utilizing Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential thermal analysis (TG/DTA) and scanning electron microscopy (SEM). The microbial succession was also determined by using denaturing gel gradient electrophoresis (DGGE). The compost was able to reach its highest temperature of 71°C at day 3 and stabilized between 30 and 40°C for 8 weeks. CMCase, FPase and β-glucosidase acted synergistically in order to degrade the cellulosic substrate. The xylanase activities increased gradually during the composting and reached the peak value of 11.637 U/g on day 35, followed by a sharp decline. Both LiP and MnP activities reached their peak values on day 35 with 0.431 and 0.132 U/g respectively. The FT-IR spectra revealed an increase in aromaticity and a decrease in aliphatic compounds such as carbohydrates as decomposition proceeded. TGA/DTG data exhibited significant changes in weight loss in compost samples, indicating degradation of organic matter. SEM micrographs showed higher amounts of parenchyma exposed on the surface of rubber wood sawdust at day 60, showing significant degradation. DGGE and 16S rDNA analyses showed that Burkholderia sp., Pandoraea sp., and Pseudomonas sp. were present throughout the composting process. Ornithinibacillus sp. and Castellaniella ginsengisoli were only found in the initial stage of the composting, while different strains of Burkholderia sp. also occurred in the later stage of composting.  相似文献   
257.
Environmental Geochemistry and Health - The smaller particles that dominate the particle number concentration (PNC) in the ambient air only contribute to a small percentage of particulate matter...  相似文献   
258.
Environmental Science and Pollution Research - Air surface temperature (AST) is a crucial importance element for many applications such as hydrology, agriculture, and climate change studies. The...  相似文献   
259.
Environmental Science and Pollution Research - The emergence of various diseases during the COVID-19 pandemic made health workers more attentive, and one of the new pathogens is the black fungus...  相似文献   
260.
The presence of contaminants in potable water is a cause of worldwide concern. In particular, the presence of metals such as arsenic, lead, cadmium, mercury, chromium can affect human health. There is thus a need for advanced techniques of water decontamination. Adsorbents based on cerium dioxide (CeO2), also named ‘ceria,’ have been used to remove contaminants such as arsenic, fluoride, lead and cadmium. Ceria and composites display high surface area, controlled porosity and morphology, and abundance of functional groups. They have already found usage in many applications including optical, semiconductor and catalysis. Exploiting their attractive features for water treatment would unravel their potential. We review the potential of ceria and its composites for the removal of toxic metal ions from aqueous medium. The article discusses toxic contaminants in water and their impact on human health; the synthesis and adsorptive behavior of ceria-based materials including the role of morphology and surface area on the adsorption capacity, best fit adsorption isotherms, kinetic models, possible mechanisms, regeneration of adsorbents; and future perspectives of using metal oxides such as ceria. The focus of the report is the generation of cost-effective oxides of rare-earth metal, cerium, in their standalone and composite forms for contaminant removal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号