首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
废物处理   1篇
环保管理   3篇
综合类   12篇
基础理论   3篇
污染及防治   3篇
评价与监测   2篇
  2020年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  1997年   1篇
  1992年   2篇
  1990年   1篇
  1987年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1967年   1篇
  1927年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
Pharmaceuticals and personal care products (PPCPs) represent pollutants of emerging concern, originating in surface and drinking waters largely from their persistence in wastewater effluent. Accordingly, a wealth of recent investigations has examined PPCP fate during wastewater treatment, focusing on their removal during conventional (e.g., activated sludge) and advanced (e.g., ozonation and membrane filtration) treatment processes. Here, we compile nearly 1500 data points from over 40 published sources pertaining to influent and effluent PPCP concentrations measured at pilot- and full-scale wastewater treatment facilities to identify the most effective series of technologies for minimizing effluent PPCP levels. Available data suggest that at best a 1-log(10) concentration unit (90%) of PPCP removal can be achieved at plants employing only primary and secondary treatment, a performance trend that is maintained over the range of reported PPCP influent concentrations (ca. 0.1-10(5) ng L(-1)). Relatively few compounds (15 of 140 PPCPs considered) are consistently removed beyond this threshold at facilities using solids removal and conventional activated sludge (CAS), and most PPCPs are removed to a far lesser extent. Further, increases in CAS hydraulic retention time or sludge retention time do not appreciably increase removal beyond this limit. In contrast, plants employing advanced treatment methodologies, particularly ozonation and/or membranes, remove the vast majority of PPCPs beyond 1-log(10) concentration unit and oftentimes to levels below analytical detection limits in effluent. Data also indicate that passive approaches for tertiary treatment (e.g., wetlands and lagoons) represent promising options for PPCP removal. We conclude by addressing future challenges and frontiers in wastewater management posed by PPCPs including analytical needs for their real-time measurement, energy demands associated with advanced treatment technologies, and byproducts arising from transformation of PPCPs during treatment.  相似文献   
22.
Dissolved silica species are naturally occurring, ubiquitous groundwater constituents with corrosion-inhibiting properties. Their influence on the performance and longevity of iron-based permeable reactive barriers for treatment of organohalides was investigated through long-term column studies using Connelly iron as the reactive medium. Addition of dissolved silica (0.5 mM) to the column feed solution led to a reduction in iron reactivity of 65% for trichloroethylene (TCE), 74% for 1,1,2-trichloroethane (1,1,2-TCA), and 93% for 1,1,1-trichloroethane (1,1,1-TCA), compared to columns operated under silica-free conditions. Even though silica adsorption was a gradual process, the inhibitory effect was evident within the first week, with subsequent decreases in reactivity over 288 days being relatively minor. Lower concentrations of dissolved silica species (0.2 mM) led to a lesser decrease (70%) in iron reactivity toward 1,1,1-TCA. The presence of dissolved silica species produced a shift in TCE product distribution toward the more highly chlorinated product cis-dichloroethylene (cis-DCE), although it did not appear to alter products originating from the trichloroethanes. The major corrosion products identified were magnetite (Fe3O4) or maghemite (gamma-Fe2O3) and carbonate green rust ([Fe4(2+)Fe(2)3+(OH)12][CO(3).2H2O]). Iron carbonate hydroxide (Fe(II)1.8Fe(III)0.2(OH)2.2CO3) was only found in the silica-free column, indicating that silica may hinder its formation. A comparison with columns operated under the same conditions, but using Master Builder iron as the reactive matrix, showed that Connelly iron is initially less reactive, but performs better than Master Builder iron over 288 days.  相似文献   
23.
24.
The FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号