首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   0篇
  国内免费   5篇
安全科学   4篇
废物处理   4篇
环保管理   12篇
综合类   20篇
基础理论   14篇
污染及防治   35篇
评价与监测   16篇
社会与环境   13篇
  2022年   7篇
  2021年   8篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1958年   2篇
  1957年   1篇
排序方式: 共有118条查询结果,搜索用时 553 毫秒
91.

With the boom in industrialization, there is an increase in the level of heavy metals in the soil which drastically affect the growth and development of plants. Nickel is an essential micronutrient for plant growth and development, but elevated level of Ni causes stunted growth, chlorosis, nutrient imbalance, and alterations in the defense mechanism of plants in terms of accumulation of osmolytes or change in enzyme activities like guiacol peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). Ni-induced toxic response was studied in seedlings of finger millet, pearl millet, and oats in terms of seedling growth, lipid peroxidation, total chlorophyll, proline content, and enzymatic activities. On the basis of germination and growth parameters of the seedling, finger millet was found to be the most tolerant. Nickel accumulation was markedly lower in the shoots as compared to the roots, which was the highest in finger millet and the lowest in shoots of oats. Plants treated with a high concentration of Ni showed significant reduction in chlorophyll and increase in proline content. Considerable difference in level of malondialdehyde (MDA) content and activity of antioxidative enzymes indicates generation of redox imbalance in plants due to Ni-induced stress. Elevated activities of POD and SOD were observed with high concentrations of Ni while CAT activity was found to be reduced. It was observed that finger millet has higher capability to maintain homeostasis by keeping the balance between accumulation and ROS scavenging system than pearl millet and oats. The data provide insight into the physiological and biochemical changes in plants adapted to survive in Ni-rich environment. This study will help in selecting the more suitable crop species to be grown on Ni-rich soils.

  相似文献   
92.
Biogeochemical C and N cycles in urban soils   总被引:8,自引:0,他引:8  
The percentage of urban population is projected to increase drastically. In 2030, 50.7 to 86.7% of the total population in Africa and Northern America may live in urban areas, respectively. The effects of the attendant increases in urban land uses on biogeochemical C and N cycles are, however, largely unknown. Biogeochemical cycles in urban ecosystems are altered directly and indirectly by human activities. Direct effects include changes in the biological, chemical and physical soil properties and processes in urban soils. Indirect effects of urban environments on biogeochemical cycles may be attributed to the introductions of exotic plant and animal species and atmospheric deposition of pollutants. Urbanization may also affect the regional and global atmospheric climate by the urban heat island and pollution island effect. On the other hand, urban soils have the potential to store large amounts of soil organic carbon (SOC) and, thus, contribute to mitigating increases in atmospheric CO(2) concentrations. However, the amount of SOC stored in urban soils is highly variable in space and time, and depends among others on soil parent material and land use. The SOC pool in 0.3-m depth may range between 16 and 232 Mg ha(-1), and between 15 and 285 Mg ha(-1) in 1-m depth. Thus, depending on the soil replaced or disturbed, urban soils may have higher or lower SOC pools, but very little is known. This review provides an overview of the biogeochemical cycling of C and N in urban soils, with a focus on the effects of urban land use and management on soil organic matter (SOM). In view of the increase in atmospheric CO(2) and reactive N concentrations as a result of urbanization, urban land use planning must also include strategies to sequester C in soil, and also enhance the N sink in urban soils and vegetation. This will strengthen soil ecological functions such as retention of nutrients, hazardous compounds and water, and also improve urban ecosystem services by promoting soil fertility.  相似文献   
93.
One of the targets of the United Nations ‘Millennium Development Goals’ adopted in 2000 is to cut in half the number of people who are suffering from hunger between 1990 and 2015. However, crop yield growth has slowed down in much of the world because of declining investments in agricultural research, irrigation, and rural infrastructure and increasing water scarcity. New challenges to food security are posed by accelerated climatic change. Considerable uncertainties remain as to when, where and how climate change will affect agricultural production. Even less is known about how climate change might influence other aspects that determine food security, such as accessibility of food for various societal groups and the stability of food supply. This paper presents the likely impacts of thermal and hydrological stresses as a consequence of projected climate change in the future potential agriculture productivity in South Asia based on the crop simulation studies with a view to identify critical climate thresholds for sustained food productivity in the region. The study suggests that, on an aggregate level, there might not be a significant impact of global warming on food production of South Asia in the short term (<2°C; until 2020s), provided water for irrigation is available and agricultural pests could be kept under control. The increasing frequency of droughts and floods would, however, continue to seriously disrupt food supplies on year to year basis. In long term (2050s and beyond), productivity of Kharif crops would decline due to increased climate variability and pest incidence and virulence. Production of Rabi crops is likely to be more seriously threatened in response to 2°C warming. The net cereal production in South Asia is projected to decline at least between 4 and 10% under the most conservative climate change projections (a regional warming of 3°C) by the end of this century. In terms of the reference to UNFCCC Article 2 on dangerous anthropogenic (human-induced) interference with the climate system, the critical threshold for sustained food productivity in South Asia appears to be a rise in surface air temperature of ~2°C and a marginal decline in water availability for irrigation or decrease in rainfall during the cropping season.  相似文献   
94.
Many of the world’s rural populations are dependent on the local provision of economically and medicinally important plant resources. However, increasing land-use intensity is depleting these resources, reducing human welfare, and thereby constraining development. Here we investigate a low cost strategy to manage the availability of valuable plant resources, facilitated by the use of isolated Ficus trees as restoration nuclei. We surveyed the plants growing under 207 isolated trees in Assam, India, and categorized them according to their local human-uses. We found that Ficus trees were associated with double the density of important high-grade timber, firewood, human food, livestock fodder, and medicinal plants compared to non-Ficus trees. Management practices were also important in determining the density of valuable plants, with grazing pressure and land-use intensity significantly affecting densities in most categories. Community management practices that conserve isolated Ficus trees, and restrict livestock grazing and high-intensity land-use in their vicinity, can promote plant growth and the provision of important local resources.

Electronic supplementary material

The online version of this article (doi:10.1007/s13280-015-0645-9) contains supplementary material, which is available to authorized users.  相似文献   
95.
Carbon emission from farm operations   总被引:42,自引:0,他引:42  
  相似文献   
96.
Crop residues as soil amendments and feedstock for bioethanol production   总被引:3,自引:0,他引:3  
Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).  相似文献   
97.
This article investigated public preferences for forest biomass based liquid biofuels, particularly ethanol blends of 10% (E10) and 85% (E85). We conducted a choice experiment study in three southern states in the United States: Arkansas, Florida, and Virginia. Reducing atmospheric CO2, decreasing risk of wildfires and pest outbreaks, and enhancing biodiversity were presented to respondents as attributes of using biofuels. Results indicated that individuals had a positive extra willingness to pay (WTP) for both ethanol blends. The extra WTP was greater for higher blends that offered larger environment benefits. The WTPs for E10 were $0.56 gallon?1, $0.58 gallon?1, and $0.48 gallon?1, and for E85 they were $0.82 gallon?1, $1.17 gallon?1, and $1.06 gallon?1 in Arkansas, Florida, and Virginia, respectively. Although differences in WTP for E10 were statistically insignificant among the three states, significant differences were found in the WTP for E85 between AR and FL and between AR and VA. Preferences for the environmental attributes appeared to be heterogeneous, as respondents’ were willing to pay a premium for E10 in all three states to facilitate the reduction of CO2 and the improvement of biodiversity but were not willing to pay more for E85 in order to enhance biodiversity.  相似文献   
98.
A novel yeast species Candida digboiensis TERI ASN6 was isolated from soil samples contaminated with acidic oily sludge (pH 1–3) from the Digboi refinery (Northeast India). The strain TERI ASN6 could degrade 73% of the total petroleum hydrocarbons present in the medium at pH 3 in a week. This strain presents a dimorphic behaviour and showed mycelia morphology when grown under stressed conditions such as low pH and in a medium containing petroleum hydrocarbons. The C. digboiensis strain could efficiently degrade the aliphatic and aromatic fractions of the acidic oily sludge at pH 3 as confirmed by gas chromatography. During the growth of TERI ASN6 in dibenzothiophene (DBT), DBT-sulfone and biphenyl-2-ol were detected. An active cytochrome P450 system, implicated in hydrocarbon oxidation, was also detected in this yeast using degenerated primers based on its conserved regions. This yeast is a potential candidate for petroleum bioremediation treatment of hydrocarbon contaminated acidic soils. Its physiological behaviour allows the strain to work efficiently where other hydrocarbon-degrading bacteria may not survive.  相似文献   
99.
Environmental Science and Pollution Research - The high de-/hydrogenation temperature of magnesium hydride is still a challenge in solid-state hydrogen storage system for automobiles applications....  相似文献   
100.
The dairy industry in the Texas High Plains has experienced rapid expansion in the past two decades. This study assesses the impact of the increased presence of dairies on overall water use, crop composition, and the local economy. The increase in water use related to the dairy industry from 2000 to 2015 was primarily due to an increase in demand for drinking by the cows (direct water) as well as an increased demand for silage (indirect water). However, a comparative analysis (dairy presence vs. no dairy presence) from a single year indicates minimal impacts on total water use due to dairies. During the same time period, the number, size, and employment of related local business establishments have increased economic activity in rural areas. Editor's note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号