首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   3篇
废物处理   14篇
环保管理   15篇
综合类   14篇
基础理论   24篇
污染及防治   27篇
评价与监测   10篇
社会与环境   11篇
  2023年   3篇
  2022年   10篇
  2021年   8篇
  2020年   4篇
  2019年   1篇
  2018年   10篇
  2017年   6篇
  2016年   7篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   8篇
  2011年   11篇
  2010年   8篇
  2009年   6篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1996年   2篇
排序方式: 共有115条查询结果,搜索用时 31 毫秒
1.
Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways. Seventeen PAs (20,611 km2) were highly vulnerable and located mainly in the Atlantic Forest (7 PAs), Cerrado (6), and the Amazon (4). Two hundred fifty-eight PAs (756,569 km2), located primarily in Amazonia, had a medium vulnerability. In the Amazon and western Cerrado, the projected severe climatic change and probability of climate-driven vegetation transition drove vulnerability up, despite the generally good conservation status of PAs. Over 80% of PAs of high or moderate vulnerability are managed by indigenous populations. Hence, besides the potential risks to biodiversity, the traditional knowledge and livelihoods of the people inhabiting these PAs may be threatened. In at least 870 PAs, primarily in the Atlantic Forest and Amazon, adaptation could happen with little or no intervention due to low climate-change hazard, high resilience status, or both. At least 20 PAs in the Atlantic Forest, Cerrado, and Amazonia should be targeted for stronger interventions (e.g., improvement of ecological connectivity), given their low resilience status. Despite being a first attempt to link vulnerability and adaptation in Brazilian PAs, we suggest that some of the PAs identified as highly or moderately vulnerable should be prioritized for testing potential adaptation strategies in the near future.  相似文献   
2.
The proposed Cotingo Dam in Brazil's far northern state of Roraima is examined with the objective of drawing lessons for Brazil's system of evaluating environmental, social, and financial consequences of development decisions. The Cotingo Dam illustrates the difficulty of translating into practice the principles of economic and environmental assessment. Examination of the financial arguments for the Cotingo Dam indicates that justifications in this sphere are insufficient to explain why the project is favored over other alternatives and points to political factors as the best explanation of the project's high priority. Strong pressure from political and entrepreneurial interest groups almost invariably dominates decision making in Amazonia. The analysis indicates the inherent tendency of the present system to produce decisions in favor of large construction projects at the expense of the environment and local peoples. The requirements intended to assure proper weight for these concerns, such as the report on environmental impacts (RIMA) and the public hearing, fail to serve this role. Cotingo also provides a test case for constitutional protections restricting construction of dams in indigenous lands.  相似文献   
3.
Environmental Science and Pollution Research - Dimethoate ([O,O-dimethyl S-(N-methylcarbamoylmethyl) phosphorodithioate]) is an organophosphate insecticide and acaricide widely used for...  相似文献   
4.
The simultaneous presence of distinct compounds in the aquatic environment can be causative of various toxicological interactions. This scenario challenges ecotoxicologists, since the assessment of toxicological effects caused by the simultaneous presence of multiple substances is by far more complicated. An illustrative example can be given by mentioning the anticholinesterasic compounds: by studying the level of cholinesterase impairment of an exposed organism, it is possible to ascertain the level of exposure to all anticholinesterasics (despite their chemical classes and natures) that the organism was subjected to. In this work, we describe the effects of three chemically different, albeit mechanistically, and toxicologically similar compounds (copper, chlorfenvinphos, and pyridostigmine) on cholinesterases of the fish Gambusia holbrooki. The results showed that the combinatorial effects may be of considerable extent, even for levels of exposure that are close to the ones already reported in the wild, for each isolated compound.  相似文献   
5.
6.
Mercury (Hg) is a hazardous chemical that accumulates in many cells and tissues, thereby producing toxicity. The kidney is a key target organ for Hg accumulation and toxicity. The contributing factors to Hg accumulation in humans include: (1) elemental and inorganic Hg exposure, often occurring by inhalation of Hg vapors; (2) exposure to methyl Hg (meHg), for example, through contaminated seafood; and (3) exposure to ethyl mercury (etHg) via thimerosal-containing vaccines. Systematic investigations on the toxic effects of etHg/thimerosal on the nervous system were carried out, and etHg/thimerosal emerged as a possible risk factor for autism and other neurodevelopmental disorders. There is, however, little known about the mechanisms and molecular interactions underlying toxicity of etHg/thimerosal in the kidney, which is the focus of the current review. Susceptible populations such as infants, pregnant women, and the elderly are exposed to etHg through thimerosal-containing vaccines, and in-depth study of the potential adverse effects on the kidney is needed. In general, toxicity occurring in association with different forms of Hg is related to: intracellular thiol metabolism and oxidative stress reactions; mitochondrial function; intracellular distribution and build-up of calcium; apoptosis; expression of stress proteins; and also interaction with the cytoskeleton. Available evidence for the etHg-induced toxicity in the kidney was examined, and the main mechanisms and molecular interactions of cytotoxicity of etHg/thimerosal exposure in kidney described. Such accumulating knowledge may help to indicate molecular pathways that, if modulated, may better handle Hg-mediated toxicity.  相似文献   
7.
8.
9.
Environmental vulnerability analysis has been sparsely used in environmental performance evaluation (EPE) of technological innovations. The present paper proposes a methodological approach to carry out vulnerability analysis of watersheds and to integrate this analysis into methods of environmental performance evaluation of agro-industrial innovations. This approach is applied to the Ambitec-Life Cycle method, described in Part 1 (this issue) of this study. The case study of green coconut substrate compared to ripe coconut substrate, also described in Part 1 (this issue), is now presented considering the vulnerability analysis of the watersheds where the life cycle stages of these products occur. The integration of vulnerability analysis in Ambitec-Life Cycle contributes to a better understanding of the environmental aspects of agro-industrial technological innovations with potential to cause significant impacts in watersheds where these innovations are implemented.  相似文献   
10.
An analytical procedure involving a three-step sequential extraction was used to determine the chemical association of heavy metals (Zn, Cr, Mn and Fe) with the major phases (exchangable, reducible and oxidizable) in samples from a fishpond of estuarine sediments. The pond is located in the Capibaribe River estuary, within the boundaries of the city of Recife, in the State of Pernambuco in the northeast of Brazil. The total metal content was determined as well. All metals were extracted from the residual fraction at a percentage greater than 50%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号