首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9826篇
  免费   2篇
安全科学   4篇
废物处理   770篇
环保管理   1232篇
综合类   986篇
基础理论   3132篇
污染及防治   1778篇
评价与监测   1014篇
社会与环境   902篇
灾害及防治   10篇
  2022年   2篇
  2020年   4篇
  2019年   5篇
  2018年   1481篇
  2017年   1373篇
  2016年   1196篇
  2015年   126篇
  2014年   17篇
  2013年   20篇
  2012年   464篇
  2011年   1348篇
  2010年   694篇
  2009年   606篇
  2008年   885篇
  2007年   1232篇
  2006年   17篇
  2005年   22篇
  2004年   40篇
  2003年   68篇
  2002年   104篇
  2001年   17篇
  2000年   13篇
  1999年   6篇
  1998年   11篇
  1997年   3篇
  1996年   4篇
  1995年   7篇
  1993年   3篇
  1990年   3篇
  1984年   11篇
  1983年   9篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1966年   1篇
  1965年   3篇
  1964年   1篇
  1962年   3篇
  1960年   2篇
  1956年   1篇
  1955年   3篇
  1953年   1篇
  1950年   2篇
  1943年   1篇
  1940年   1篇
  1935年   2篇
  1929年   1篇
  1926年   2篇
  1913年   1篇
排序方式: 共有9828条查询结果,搜索用时 15 毫秒
251.

Background, aim, and scope  

Organoarsenical-containing animal feeds that promote growth and resistance to parasites are mostly excreted unchanged, ending up in nearby wastewater storage lagoons. Earlier work documented the partial transformation of organoarsenicals, such as, 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) to the more toxic inorganic arsenate [As(V)] and 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA). Unidentified roxarsone metabolites using liquid chromatography coupled to inductively coupled plasma mass spectrometry (LC/ICP-MS) were also inferred from the corresponding As mass balance. Earlier batch experiments in our laboratory suggested the presence of organometallic (Cu) complexes during relevant roxarsone degradation experiments. We hypothesized that organocopper compounds were complexed to roxarsone, mediating its degradation in field-collected swine wastewater samples from storage lagoons. The objective of this study was to investigate the role of organometallic (Cu) complexes during roxarsone degradation under aerobic conditions in swine wastewater suspensions, using electrospray ionization mass spectrometry (ES-MS).  相似文献   
252.
Activated natural siderite (ANS) was used to investigate its characteristics and mechanisms of As(V) adsorption from aqueous solution. Batch tests were carried out to determine effects of contact time, initial As(V) concentration, temperature, pH, background electrolyte, and coexisting anions on As(V) adsorption. Arsenic(V) adsorption on ANS well-fitted pseudo-second-order kinetics. ANS showed a high-adsorption capacity of 2.19 mg/g estimated from Langmuir isotherm at 25 °C. Thermodynamic studies indicated that As(V) adsorption on ANS was spontaneous, favorable, and endothermic. ANS adsorbed As(V) efficiently in a relatively wide pH range between 2.0 and 10.0, although the removal efficiency was slightly higher in acidic conditions than that in basic conditions. Effects of background electrolyte and coexisting anions were not significant within the concentration ranges observed in high As groundwater. Results of XRD and Fe K-edge XANES analysis suggested ANS acted as an Fe(II)/(III) hybrid system, which was quite effective in adsorbing As from aqueous solution. There was no As redox transformation during adsorption, although Fe(II) oxidation occurred in the system. Two infrared bands at 787 and 872 cm?1 after As(V) adsorption suggested that As(V) should be predominantly adsorbed on ANS via inner-sphere bidendate binuclear surface complexes.  相似文献   
253.
Hydroponic root mats for wastewater treatment—a review   总被引:2,自引:0,他引:2  
Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.  相似文献   
254.
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental chemical with widespread nonoccupational human exposure through multiple ways. Although considerable efforts have been invested to investigate mechanisms of DEHP toxicity, the key metabolic biomarkers of DEHP toxicity remain to be identified. The aim of this study was to assess the urinary metabonomics of dietary DEHP in rats using the technique of ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). Fourteen female Wistar rats were divided into two groups and given increasing dietary doses of DEHP for 30 consecutive days. The urinary metabolite profile was studied using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) enabled clusters to be clearly separated. Eleven principal urinary metabolites were identified as contributing to the clusters. The clusters in the positive electrospray ionization (ESI) mode were xanthurenic acid, kynurenic acid, nonate, N6-methyladenosine, and L-isoleucyl-L-proline. The clusters in the negative ESI mode were hippuric acid, tetrahydrocortisol, citric acid, phenylpropionylglycine, cPA(18:2(9Z, 12Z)/0:0), and LysoPC(14:1(9Z)). The urinary metabonomic changes indicated that exposure to dietary DEHP can affect energy-related metabolism, liver and renal function, fatty acid metabolism, and cause DNA damage in rats. The findings of this study on the urinary metabolites and metabolic pathways of DEHP may form the basis for future studies on the mechanisms of toxicity of this commonly found environmental chemical.  相似文献   
255.
Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m2 bar and RB5 rejection of 68%.  相似文献   
256.
Land use is known to alter the nature of land–water interactions, but the potential effects of widespread forest management on headwaters in boreal regions remain poorly understood. We evaluated the importance of catchment land use, land cover, and local stream variables for macroinvertebrate community and functional trait diversity in 18 boreal headwater streams. Variation in macroinvertebrate metrics was often best explained by in-stream variables, primarily water chemistry (e.g. pH). However, variation in stream variables was, in turn, significantly associated with catchment-scale forestry land use. More specifically, streams running through catchments that were dominated by young (11–50 years) forests had higher pH, greater organic matter standing stock, higher abundance of aquatic moss, and the highest macroinvertebrate diversity, compared to streams running through recently clear-cut and old forests. This indicates that catchment-scale forest management can modify in-stream habitat conditions with effects on stream macroinvertebrate communities and that characteristics of younger forests may promote conditions that benefit headwater biodiversity.  相似文献   
257.
The month-to-month variability of biomass and CaCO3 precipitation by dense charophyte beds was studied in a shallow Chara-lake at two depths, 1 and 3 m. Charophyte dry weights (d.w.), the percentage contribution of calcium carbonate to the dry weight and the precipitation of CaCO3 per 1 m2 were analysed from May to October 2011. Physical-chemical parameters of water were also measured for the same sample locations. The mean dry weight and calcium carbonate precipitation were significantly higher at 1 m than at 3 m. The highest measured charophyte dry weight (exceeding 2000 g m?2) was noted at 1 m depth in September, and the highest CaCO3 content in the d.w. (exceeding 80 % of d.w.) was observed at 3 m depth in August. The highest CaCO3 precipitation per 1 m2 exceeded 1695 g at 1 m depth in August. Significant differences in photosynthetically active radiation (PAR) were found between 1 and 3 m depths; there were no significant differences between depths for other water properties. At both sampling depths, there were distinct correlations between the d.w., CaCO3 content and precipitation and water properties. In addition to PAR, the water temperature and magnesium and calcium ion concentrations were among the most significant determinants of CaCO3 content and d.w. The results show that light availability seems to be the major factor in determining charophyte biomass in a typical, undisturbed Chara-lake. The study results are discussed in light of the role of charophyte vegetation in whole ecosystem functioning, with a particular focus on sedimentary processes and the biogeochemical cycle within the littoral zone.  相似文献   
258.
Background, aims, and scope  Sometimes, urban wastewaters convey a more or less significant part of toxic products from industries or the craft industry. Nitrifying activity can be affected by these substances, implying higher ammonia concentrations in the outlet effluent and contributing to toxicity for the aquatic environment. Moreover, the more stringently treated wastewater standards now require a reliable treatment for nitrogen. One of the key issues is the identification of the inhibition behavior of nitrifying bacteria facing a toxic substance. This new understanding could then finally be integrated into models in order to represent and to optimize wastewater treatment plants (WWTP) operation in cases involving ‘toxic scenarios’. Materials and methods  The toxic substances studied in this work, cadmium and 3.5-dichlorophenol (3.5-DCP), are representative of chemical substances commonly found in municipal sewage and industrial effluents and symbolize two different contaminant groups. The effects of Cd and 3.5-DCP on nitrification kinetics have been investigated using respirometry techniques. Results  IC50 values determination gives concentrations of 3.1 mg/L for 3.5-DCP and 45.8 mg/L for Cd at 21 ± 1°C. The variation to low temperature seems to have no real effect on IC50 for DCP, but induces a decrease of cadmium IC50 to 27.5 mg/L at 14°C. Finally, specific respirometric tests have been carried out in order to determine the potential effect of these toxic substances on the nitrifying decay rate b a . No significant effect has been noticed for Cd, whereas the presence of 3.5-DCP (at IC50 concentration) induced a dramatic increase of b a at 20°C. The same behavior has been confirmed by experiments performed in winter periods with a sludge temperature around 12°C. Discussion  The target substances have different modes of action on activity and mortality, notably due to the abilities of the contaminant to be precipitated, accumulated, or even to be progressively degraded. Studies realized at low temperature confirmed this assumption, and put in evidence the effect of temperature on toxic substances capable of being biosorbed. However, the change in the sludge sample characteristics can be pointed out as a problem in the investigation of the temperature effect on nitrification inhibition, as biosorption, bioaccumulation, and predation are directly linked to the sludge characteristics (VSS concentration, temperature) and the plant operating conditions (loading rates, sludge age, etc.). Conclusions  This work brings new understandings concerning the action mode of these specific contaminants on nitrifying bacteria and, in particular, on the role of temperature. The experiments lead to the determination of the IC50 values for both toxic substances on biological nitrification. The inhibition mechanisms of Cd and 3.5-DCP on nitrifying activity have been simply represented by a non-competitive inhibition model. Recommendations and perspectives  Other experiments carried out in a continuous lab-scale pilot plant should be done with a proper control of the operating conditions and of the sludge characteristics in order to better understand the mechanisms of nitrification inhibition for each contaminant. Finally, these first results show that toxic substances can have an effect on the growth rate but also on the decay rate, depending on the characteristics of the toxic substance and the sludge. This eventual double effect would imply different strategies of WWTP operation according to the behavior of the contaminant on the bacteria.  相似文献   
259.
The Fallacies of Concurrent Climate Policy Efforts   总被引:1,自引:0,他引:1  
Marian Radetzki 《Ambio》2010,39(3):211-222
Climate policy has assumed an extreme degree of urgency in the international debate in recent years. This article begins by taking a critical look at the scientific underpinnings of the efforts to stabilize the climate. It points to several serious question marks on the purported relationship between greenhouse gas emissions and global warming, and expresses distrust about claims of impending catastrophes related to rising sea levels, hurricanes, and spread of infectious disease. It then reviews the concurrent climate policy efforts and concludes that they are incoherent, misguided and unduly costly, and that they have so far had no perceptible impact on anthropogenic greenhouse gas emissions. The exceedingly ambitious policy plans currently under preparation suffer from similar fallacies. For these reasons, but also because of the remaining scientific doubts and the exorbitant costs that have to be incurred, skepticism is expressed about the preparedness to implement the climate policy plans currently on the table.  相似文献   
260.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号