首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14253篇
  免费   157篇
  国内免费   125篇
安全科学   426篇
废物处理   404篇
环保管理   2239篇
综合类   3399篇
基础理论   3326篇
环境理论   8篇
污染及防治   3574篇
评价与监测   672篇
社会与环境   405篇
灾害及防治   82篇
  2018年   142篇
  2017年   145篇
  2016年   210篇
  2015年   173篇
  2014年   224篇
  2013年   1072篇
  2012年   344篇
  2011年   487篇
  2010年   358篇
  2009年   454篇
  2008年   504篇
  2007年   542篇
  2006年   501篇
  2005年   372篇
  2004年   384篇
  2003年   434篇
  2002年   368篇
  2001年   488篇
  2000年   339篇
  1999年   236篇
  1998年   172篇
  1997年   155篇
  1996年   189篇
  1995年   196篇
  1994年   212篇
  1993年   191篇
  1992年   198篇
  1991年   195篇
  1990年   222篇
  1989年   207篇
  1988年   176篇
  1987年   171篇
  1986年   157篇
  1985年   184篇
  1984年   157篇
  1983年   172篇
  1982年   178篇
  1981年   185篇
  1980年   155篇
  1979年   157篇
  1978年   144篇
  1977年   131篇
  1976年   138篇
  1975年   118篇
  1974年   146篇
  1973年   132篇
  1972年   127篇
  1971年   110篇
  1970年   107篇
  1967年   119篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
731.
Abstract

The direct Karl Fischer (KF) titration method has known interferences for measuring water content. In addition, in analyzing some paints, KF can fail to produce an accurate analysis. The California Air Resources Board (GARB) staff has developed a KF procedure that can be used to determine the water content of consumer products. The procedure uses an oven accessory to the titration system, and is based on a distillation method developed by the California Polytechnical University at San Luis Obispo (Cal Poly). Samples are diluted in l-methoxy-2-propanol (MPA), and an aliquot is injected into an enclosed oven system, where the MPA/water azeotrope is swept directly into the KF titration vessel. The technique is accurate and precise and, thus far, proves to be a fast and reliable method for analysis.  相似文献   
732.
ABSTRACT

During recent years, greater emphasis has been placed on the control of particulate emissions from painting operations. This has gained more importance as more is learned about the potential release of toxic metals to the atmosphere from painting operations. This has led to queries about the efficiency of various painting arrestor systems to reduce particulate discharges to the atmosphere. Even more important is the capability of the arrestor systems to control PM10 emissions.

In 1995, the U.S. Environmental Protection Agency initiated a study to evaluate various dry paint overspray arrestor systems. This study was designed to evaluate not only the total emissions control capability of the arrestor but also the PM10 control capability of the various system designs. Paint overspray arrestor systems using five different filtration concepts or materials were selected. They include systems constructed of fiberglass, paper, Styrofoam, and cardboard materials. These systems used filtration techniques incorporating the following filtration phenomena and designs: cyclone, baffle, bag systems, and mesh systems.

The testing used an optical particle counting procedure to determine the concentration of particles of a given size fraction to penetrate a test arrestor system. The results of the testing indicated that there are significant differences in the efficiency of the tested system designs to capture and retain PM10.

This paper summarizes the results of the research conducted to determine the capability of the arrestor systems to capture particulate of sizes down to approximately 1 μm in surface diameter.  相似文献   
733.
ABSTRACT

The capture of elemental mercury (Hg0) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sor-bents was examined in this bench-scale study under conditions prevalent in coal-fired utilities. Ca-based sorbent performances were compared with that of an activated carbon. Hg0 capture of about 40% (nearly half that of the activated carbon) was achieved by two of the Ca-based sorbents. The presence of sulfur dioxide (SO2) in the simulated coal combustion flue gas enhanced the Hg0 capture from about 10 to 40%. Increasing the temperature in the range of 65-100 °C also caused an increase in the Hg0 capture by the two Ca-based sorbents. Mercuric chloride (HgCl2) capture exhibited a totally different pattern. The presence of SO2 inhibited the HgCl2 capture by Ca-based sorbents from about 25 to less than 10%. Increasing the temperature in the studied range also caused a decrease in HgCl2 capture. Upon further pilot-scale confirmations, the results obtained in this bench-scale study can be used to design and manufacture more cost-effective mercury sorbents to replace conventional sorbents already in use in mercury control.  相似文献   
734.
ABSTRACT

Time-series of daily mortality data from May 1992 to September 1995 for various portions of the seven-county Philadelphia, PA, metropolitan area were analyzed in relation to weather and a variety of ambient air quality parameters. The air quality data included measurements of size-classified PM, SO4 2-, and H+ that had been collected by the Harvard School of Public Health, as well as routine air pollution monitoring data. Because the various pollutants of interest were measured at different locations within the metropolitan area, it was necessary to test for spatial sensitivity by comparing results for different combinations of locations. Estimates are presented for single pollutants and for multiple-pollutant models, including gaseous pollutants and mutually exclusive components of PM (PM2.5 and coarse particles, SO4 2- and non-SO4 2- portions of total suspended particulate [TSP] and PM10), measured on the day of death and the previous day.

We concluded that associations between air quality and mortality were not limited to data collected in the same part of the metropolitan area; that is, mortality for one part may be associated with air quality data from another, not necessarily neighboring, part. Significant associations were found for a wide variety of gaseous and particulate pollutants, especially for peak O3. Using joint regressions on peak O3 with various other pollutants, we found that the combined responses were insensitive to the specific other pollutant selected. We saw no systematic differences according to particle size or chemistry. In general, the associations between daily mortality and air pollution depended on the pollutant or the PM metric, the type of collection filter used, and the location of sampling. Although peak O3 seemed to exhibit the most consistent mortality responses, this finding should be confirmed by analyzing separate seasons and other time periods.  相似文献   
735.
ABSTRACT

Methane exchange with the atmosphere was measured during three seasons at the Rooney Road landfill in Jefferson County, CO. Substantial spatial and temporal variability in exchange rates were observed. Mean fluxes to the atmosphere were 534, 1290, and 538 mg CH4/m2/day, respectively, in the fall of 1994, winter of 1994–1995, and summer of 1995. Median fluxes were 12.42, 8.62, and 5.65 mg CH4/m2/day, respectively, during those seasons. Forty-three of 177 measurements had small negative fluxes, suggesting methanotrophic activity in the landfill cover soils. Despite probable methanotrophic activity in cover soils, landfills without gas collection systems may emit substantial CH4 to the atmosphere, with large spatial and seasonal variability.  相似文献   
736.
ABSTRACT

Two collaborative studies have been conducted by the U.S. Environmental Protection Agency (EPA) National Exposure Research Laboratory (NERL) and National Health and Environmental Effects Research Laboratory to determine personal exposures and physiological responses to par-ticulate matter (PM) of elderly persons living in a retirement facility in Fresno, CA. Measurements of PM and other criteria air pollutants were made inside selected individual residences within the retirement facility and at a central outdoor site on the premises. In addition, personal PM exposure monitoring was conducted for a subset of the participants, and ambient PM monitoring data were available for comparison from the NERL PM research monitoring platform in central Fresno. Both a winter (February 1-28, 1999) and a spring (April 19-May 16, 1999) study were completed so that seasonal effects could be  相似文献   
737.
ABSTRACT

The application of artificial intelligence techniques for performance optimization of the fuel lean gas reburn (FLGR) system is investigated. A multilayer, feedforward artificial neural network is applied to model static nonlinear relationships between the distribution of injected natural gas into the upper region of the furnace of a coal-fired boiler and the corresponding oxides of nitrogen (NOx) emissions exiting the furnace. Based on this model, optimal distributions of injected gas are determined such that the largest NOx reduction is achieved for each value of total injected gas. This optimization is accomplished through the development of a new optimization method based on neural networks. This new optimal control algorithm, which can be used as an alternative generic tool for solving multidimensional nonlinear constrained optimization problems, is described and its results are successfully validated against an off-the-shelf tool for solving mathematical programming problems. Encouraging results obtained using plant data from one of Commonwealth Edison's coal-fired electric power plants demonstrate the feasibility of the overall approach.

Preliminary results show that the use of this intelligent controller will also enable the determination of the most cost-effective operating conditions of the FLGR system by considering, along with the optimal distribution of the injected gas, the cost differential between natural gas and coal and the open-market price of NOx emission credits. Further study, however, is necessary, including the construction of a more comprehensive database, needed to develop high-fidelity process models and to add carbon monoxide (CO) emissions to the model of the gas reburn system.  相似文献   
738.
ABSTRACT

Because of the U.S. Environmental Protection Agency’s (EPA) new ambient air quality standard for fine particles, the need is likely to continue for more detailed scientific investigation of various types of particles and their effects on human health. Epidemiology studies have become the method of choice for investigating health responses to such particles and to other air pollutants in community settings. Health effects have been associated with virtually all of the gaseous criteria pollutants and with the major constituents of airborne particulate matter (PM), including all size fractions less than about 20 gm, inorganic ions, carbonaceous particles, metals, crustal material, and biological aerosols. In many of the more recent studies, multiple pollutants or agents (including weather variables) have been significantly associated with health responses, and various methods have been used to suggest which ones might be the most important. In an ideal situation, classical least-squares regression methods are capable of performing this task. However, in the real world, where most of the pollutants are correlated with one another and have varying degrees of measurement precision and accuracy, such regression results can be misleading. This paper presents some guidelines for dealing with such collinearity and model comparison problems in both single- and multiple-pollutant regressions. These techniques rely on mean effect (attributable risk) rather than statistical significance per se as the preferred indicator of importance for the pollution variables.  相似文献   
739.
ABSTRACT

The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a “bottom-up” engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   
740.
ABSTRACT

In order to characterize typical indoor exposures to chemicals of interest for research on breast cancer and other hormonally mediated health outcomes, methods were developed to analyze air and dust for target compounds that have been identified as animal mammary carcinogens or hormonally active agents and that are used in commercial or consumer products or building materials. These methods were applied to a small number of residential and commercial environments to begin to characterize the extent of exposure to these classes of compounds. Phenolic compounds, including nonylphenol, octylphenol, bisphenol A, and the methoxychlor metabolite 2,2-bis (p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE), were extracted, derivatized, and analyzed by gas chromatography/mass spectrometry (GC/MS)–selective ion monitoring (SIM). Selected phthalates, pesticides, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) were extracted and analyzed by GC/MS-SIM. Residential and workplace samples showed detectable levels of twelve pesticides in dust and seven in air samples. Phthalates were abundant in dust (0.3524 μg/g) and air (0.005-2.8 μg/m3). Nonylphenol and its mono- and di-ethoxylates were prevalent in dust (0.82-14 μg/g) along with estrogenic phenols such as bisphenol A and o-phenyl phenol. In this 7-sample pilot study, 33 of 86 target compounds were detected in dust, and 24 of 57 target compounds were detected in air. In a single sample from one home, 27 of the target compounds were detected in dust and 15 in air, providing an indication of chemical mixtures to which humans are typically exposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号