首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14253篇
  免费   157篇
  国内免费   125篇
安全科学   426篇
废物处理   404篇
环保管理   2239篇
综合类   3399篇
基础理论   3326篇
环境理论   8篇
污染及防治   3574篇
评价与监测   672篇
社会与环境   405篇
灾害及防治   82篇
  2018年   142篇
  2017年   145篇
  2016年   210篇
  2015年   173篇
  2014年   224篇
  2013年   1072篇
  2012年   344篇
  2011年   487篇
  2010年   358篇
  2009年   454篇
  2008年   504篇
  2007年   542篇
  2006年   501篇
  2005年   372篇
  2004年   384篇
  2003年   434篇
  2002年   368篇
  2001年   488篇
  2000年   339篇
  1999年   236篇
  1998年   172篇
  1997年   155篇
  1996年   189篇
  1995年   196篇
  1994年   212篇
  1993年   191篇
  1992年   198篇
  1991年   195篇
  1990年   222篇
  1989年   207篇
  1988年   176篇
  1987年   171篇
  1986年   157篇
  1985年   184篇
  1984年   157篇
  1983年   172篇
  1982年   178篇
  1981年   185篇
  1980年   155篇
  1979年   157篇
  1978年   144篇
  1977年   131篇
  1976年   138篇
  1975年   118篇
  1974年   146篇
  1973年   132篇
  1972年   127篇
  1971年   110篇
  1970年   107篇
  1967年   119篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
761.
ABSTRACT

The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a “bottom-up” engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.  相似文献   
762.
ABSTRACT

Recent experiments confirm field experience that duct cleaning alone may not provide adequate protection from regrowth of fungal contamination on fiberglass duct liner (FGDL). Current recommendations for remediation of fungally contaminated fiberglass duct materials specify complete removal of the materials. But removal of contaminated materials can be extremely expensive. Therefore, a common practice in the duct-cleaning industry is the postcleaning use of antimicrobial surface coatings with the implication that they may contain or limit regrowth.

Little information is available on the efficacy of these treatments. This paper describes a study to evaluate whether three commercially available antimicrobial coatings, placed on a cleaned surface that 1 year previously had been actively growing microorganisms, would be able to prevent regrowth. The three coatings contained different active antimicrobial compounds. All three of the coatings were designed for use on heating, ventilation, and air conditioning (HVAC) system components or interior surfaces of lined and unlined duct systems. Coating I was a polyacrylate copolymer containing zinc oxide and borates. Coating II was an acrylic coating containing decabromodiphenyl oxide and antimony trioxide. Coating III was an acrylic primer containing a phosphated quaternary amine complex.

The study included field and laboratory assessments. The three treatments were evaluated in an uncontrolled field setting in an actual duct system. The laboratory study broadened the field study to include a range of humidities under controlled conditions. Both static and dynamic chamber laboratory experiments were performed. The results showed that two of the three antimicrobial coatings limited the regrowth of fungal contamination, at least in the short term (the 3-month time span of the study); the third did not. Before use in the field, testing of the efficacy of antimicrobial coatings under realistic use conditions is recommended because antimicrobials have different baseline activities and interact differently with the substrate that contains them and their local environment.  相似文献   
763.
Abstract

In siting a monitor to measure compliance with U.S. National Ambient Air Quality Standards (NAAQS) for par-ticulate matter (PM), there is a need to characterize variations in PM concentration within a neighborhood-scale region to achieve monitor siting objectives. A simple methodology is provided here for the selection of a neighborhood-scale site for meeting either of the two objectives identified for PM monitoring. This methodology is based on analyzing middle-scale (from 100 to 500 m) data from within the area of interest. The required data can be obtained from widely available dispersion models and emissions databases.

The performance of the siting methodology was evaluated in a neighborhood-scale field study conducted in Hudson County, NJ, to characterize the area’s inhalable particulate (PM10) concentrations. Air monitors were located within a 2- by 2-km area in the vicinity of the Lincoln Tunnel entrance in Hudson County. Results indicate the siting methodology performed well, providing a positive relationship between the predicted concentration rank at each site and the actual rank experienced during the field study. Also discussed are factors that adversely affected the predictive capabilities of the model.  相似文献   
764.
Abstract

The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall average percentage source contribution estimates (SCEs) for five source categories: gasoline engines (33 ± 4%), diesel engines (16 ± 2%), secondary SO4 2? (19 ± 2%), crustal/soil (22 ± 2%), and vegetative burning (10 ± 2%). The Unmix analysis was supplemented with scanning electron microscopy (SEM) of a limited number of filter samples for information on possible additional low-strength sources. Except for the diesel engine source category, the Unmix SCEs were generally consistent with an earlier multivariate receptor analysis of essentially the same data using the Positive Matrix Factorization (PMF) model. This article provides the first demonstration for an urban area of the capability of the Unmix receptor model.  相似文献   
765.
Abstract

This project demonstrated the biofiltration of a trichloroethylene (TCE)-contaminated airstream generated by air stripping groundwater obtained from several wells located at the Anniston Army Depot, Anniston, AL. The effects of several critical process variables were investigated to evaluate technical and economic feasibility, define operating limits and preferred operating conditions, and develop design information for a full-scale biofilter system. Long-term operation of the demonstration biofilter system was conducted to evaluate the performance and reliability of the system under variable weather conditions. Propane was used as the primary substrate necessary to induce the production of a nonspecific oxygenase. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. TCE degradation rates were dependent on the inlet contaminant concentration as well as on the loading rate. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis.  相似文献   
766.
Abstract

The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene‐chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20–40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.  相似文献   
767.
Abstract

In developing countries, high levels of particle pollution from the use of coal and biomass fuels for household cooking and heating are a major cause of ill health and premature mortality. The cost and complexity of existing monitoring equipment, combined with the need to sample many locations, make routine quantification of household particle pollution levels difficult. Recent advances in technology, however, have enabled the development of a small, portable, data-logging particle monitor modified from commercial smoke alarm technology that can meet the needs of surveys in the developing world at reasonable cost. Laboratory comparisons of a prototype particle monitor developed at the University of California at Berkeley (UCB) with gravi-metric filters, a tapered element oscillating microbalance, and a TSI DustTrak to quantify the UCB particle monitor response as a function of both concentration and particle size and to examine sensor response in relation to changes in temperature, relative humidity, and elevation are presented here. UCB particle monitors showed good linearity in response to different concentrations of laboratory-generated oleic acid aerosols with a coarse (mass median diameter, 2.1 µm) and fine (mass median diameter, 0.27–0.42 µm) size distributions (average r2 = 0.997 ± 0.005). The photoelectric and ionization chamber showed a wide range of responses based on particle size and, thus, require calibration with the aerosol of interest. The ionization chamber was five times more sensitive to fine rather than coarse particles, whereas the photoelectric chamber was five times more sensitive to coarse than fine. The ratio of the response between the two sensors has the potential for mass calibration of individual data points based on estimated parameters of the size distribution. The results demonstrate the significant potential of this monitor, which will facilitate the evaluation of interventions (improved fuels, stoves, and ventilation) on indoor air pollution levels and research on the impacts of indoor particle levels on health in developing countries.  相似文献   
768.
Abstract

About half of the world's population now lives in urban areas because of the opportunity for a better quality of life. Many of these urban centers are expanding rapidly, leading to the growth of megacities, which are often defined as metropolitan areas with populations exceeding 10 million inhabitants. These concentrations of people and activity are exerting increasing stress on the natural environment, with impacts at urban, regional and global levels. In recent decades, air pollution has become one of the most important problems of megacities. Initially, the main air pollutants of concern were sulfur compounds, which were generated mostly by burning coal. Today, photochemical smog—induced primarily from traffic, but also from industrial activities, power generation, and solvents—has become the main source of concern for air quality, while sulfur is still a major problem in many cities of the developing world. Air pollution has serious impacts on public health, causes urban and regional haze, and has the potential to contribute significantly to global climate change. Yet, with appropriate planning megacities can efficiently address their air quality problems through measures such as application of new emission control technologies and development of mass transit systems.

This review is focused on nine urban centers, chosen as case studies to assess air quality from distinct perspectives: from cities in the industrialized nations to cities in the developing world. This review considers not only megacities, but also urban centers with somewhat smaller populations, for while each city—its problems, resources, and outlook—is unique, the need for a holistic approach to complex environmental problems is the same. There is no single strategy to reduce air pollution in megacities; a mix of policy measures will be needed to improve air quality. Experience shows that strong political will coupled with public dialogue is essential to effectively implement the regulations required to address air quality.  相似文献   
769.
Abstract

To reduce public exposure to diesel particulate matter (DPM), the California Air Resources Board has begun adoption of a series of rules to reduce these emissions from in-use heavy-duty vehicles. Passive diesel particulate filter (DPF) after-treatment technologies are a cost-effective method to reduce DPM emissions and have been used on a variety of vehicles worldwide. Two passive DPFs were interim-verified in California and approved federally for use in most 1994–2002 engine families for vehicles meeting min engine exhaust temperature requirements for successful filter regeneration. Some vehicles, however, may not be suited to passive DPFs because of lower engine exhaust temperatures. The purpose of this study was to determine the applicability of two types of passive DPFs to solid waste collection vehicles, the group of vehicles for which California recently mandated in-use DPM reductions. We selected 60 collection vehicles to represent the four main types of collection vehicle duty cycles—roll-offs, and front-end, rear, and side loaders—and collected second-by-second engine exhaust temperature readings for one week from each vehicle. As a group, the collection vehicles exhibited low engine exhaust temperatures, making the application of passive DPFs to these vehicles difficult. Only 35% of tested vehicles met the temperature requirements for one passive DPF, whereas 60% met the temperature requirements for the other. Engine exhaust temperatures varied by vehicle type. Side and front-end loaders met the engine exhaust temperature requirements in the greatest number of cases with ~50–90% achieving the required regeneration temperatures. Only 8–25% of the rear loader and roll-off collection vehicles met the engine exhaust temperature requirements. Solid waste collection vehicles represent a diverse fleet with a variety of duty cycles. Low engine exhaust temperatures will need to be addressed for successful use of passive DPFs in this application.  相似文献   
770.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号