首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   10篇
  国内免费   6篇
安全科学   18篇
废物处理   25篇
环保管理   82篇
综合类   23篇
基础理论   65篇
污染及防治   56篇
评价与监测   31篇
社会与环境   14篇
灾害及防治   2篇
  2023年   4篇
  2022年   2篇
  2021年   2篇
  2019年   9篇
  2018年   9篇
  2017年   4篇
  2016年   6篇
  2015年   13篇
  2014年   7篇
  2013年   41篇
  2012年   12篇
  2011年   10篇
  2010年   14篇
  2009年   11篇
  2008年   14篇
  2007年   13篇
  2006年   15篇
  2005年   14篇
  2004年   3篇
  2003年   9篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1991年   6篇
  1990年   2篇
  1988年   5篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1977年   4篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有316条查询结果,搜索用时 31 毫秒
91.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   
92.
ABSTRACT: The Cheat River of West Virginia is impaired by acid mine drainage (AMD). Fifty‐five of its river segments were placed on the 303(d) list, which required calculations of total maximum daily load (TMDL) to meet the water quality criteria for pH, total iron, aluminum, manganese, and zinc. An existing watershed model was enhanced to simulate AMD as nonpoint source load. The model divided a watershed into a network of catchments and river segments. Each catchment was divided into soil layers, which could contain pyrite, calcite and other minerals. A kinetic expression was used to simulate pyrite oxidation as a function of oxygen in the soil voids. Oxygen in the soil voids was consumed by pyrite oxidation and replenished by earth breathing. The by‐products of pyrite oxidation were calculated according to its mass action equations. Chemical equilibrium was used to account for the speciation of ferrous and ferric irons and precipitation of metal hydroxides. Simulated hydrology and water quality were compared to available data. The USEPA used the calibrated model to calculate the TMDLs in the Cheat River Watershed.  相似文献   
93.
The treatment of per- and polyfluoroalkyl substances (PFAS) within groundwater is an emerging topic, with various technologies being researched and tested. Currently, PFAS-impacted groundwater is typically treated ex situ using sorptive media such as activated carbon and ion exchange resin. Proven in situ remedial approaches for groundwater have been limited to colloidal activated carbon (CAC) injected into aquifers downgradient of the source zones. However, treatment of groundwater within the source zones has not been shown to be feasible to date. This study evaluated the use of CAC to treat dissolved PFAS at the air–water interface within the PFAS source zone. Studies have shown that PFAS tends to preferentially accumulate at the air–water interface due to the chemical properties of the various PFAS. This accumulation can act as a long-term source for PFAS, thus making downgradient treatment of groundwater a long-term requirement. A solution of CAC was injected at the air–water interface within the source zone at a site with PFAS contamination using direct push technology. A dense injection grid that targeted the interface between the air and groundwater was used to deliver the CAC. Concentrations of PFAS within the porewater and groundwater were collected using a series of nine lysimeters installed within the vadose and saturated water columns. A total of six PFAS were detected in the porewater and groundwater including perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA). Detectable concentrations of PFAS within the pore and groundwater before treatment ranged from values greater than 300 µg/L for PFPeA to less than 3 µg/L for PFNA. Following the injection of the CAC, monitoring of the porewater and groundwater for PFAS was conducted approximately 3, 6, 9, 12, and 18 months postinjection. The results indicated that the PFAS within the porewater and groundwater at and near the air–water interface was effectively attenuated over the 1.5-year monitoring program, with PFAS concentrations being below the method detection limits of approximately 10 ng/L, with the exception of PFPeA, which was detected within the porewater during the 18-month sampling event at concentrations of up to 55 ng/L. PFPeA is a five carbon-chained PFAS that has been shown to have a lower affinity for sorption onto activated carbon compared to the longer carbon-chained PFAS such as PFOA. Examination of aquifer cores in the zone of injection indicated that the total organic carbon concentration of the aquifer increased by five orders of magnitude postinjection, with 97% of the samples collected within the target injection area containing activated carbon, indicating that the CAC was successfully delivered into the source zone.  相似文献   
94.
Molecular approaches are particularly useful for measuring genetic diversity and were applied to samples of central stonerollers obtained from sites along tributaries to the Great Miami River in Ohio. We used Random Amplified Polymorphic DNA (RAPD) analysis to assess the level of genetic diversity within and among these populations. RAPD analysis generates genetic profiles that were used to develop indices of genetic similarity. The RAPD method provides a cost effective means of generating an arbitrary sample of anonymous loci across the genome and generate a virtually unlimited set of loci for use in genetic analysis in the absence of specific sequence information. These attributes make RAPDs well suited for use in evaluating the diversity and assessing the potential vulnerability to exposure of populations across multiple spatial scales. The results demonstrate that a significant amount of structuring exists among populations analyzed to date and that a trend exists towards genetic diversity being an inverse function of site distance from the main stem as well as a being directly related to stream order. This indicates that populations farthest from main conduits or in lower order streams, and thereby most isolated, may be the most vulnerable populations to stressor exposure. It is hoped that information pertaining to genetic diversity, when integrated with other metrics of resource condition, will aid in making scientifically grounded decisions on resource management that enhance the probability of population survival and preserve natural evolutionary processes.  相似文献   
95.
Being constantly connected to others via e‐mail and other online messages is increasingly typical for many employees. In this paper, we develop and test a model that specifies how interruptions by online messages relate to negative and positive affect. We hypothesize that perceived interruptions by online messages predict state negative affect via time pressure and that perceived interruptions predict state positive affect via responsiveness to these online messages and perceived task accomplishment. A daily survey study with 174 employees (a total of 811 day‐level observations) provided support for our hypotheses at the between‐person and within‐person level. In addition, perceived interruptions showed a negative direct association with perceived task accomplishment. Our study highlights the importance of being responsive to online messages and shows that addressing only the negative effects of perceived interruptions does not suffice to understand the full impact of interruptions by online messages in modern jobs.  相似文献   
96.
Poly‐ and perfluoroalkyl substances (PFASs) have been identified by many regulatory agencies as contaminants of concern within the environment. In recent years, regulatory authorities have established a number of health‐based regulatory and evaluation criteria with groundwater PFAS concentrations typically being less than 50 nanograms per liter (ng/L). Subsurface studies suggest that PFAS compounds are recalcitrant and widespread in the environment. Traditionally, impacted groundwater is extracted and treated on the surface using media such as activated carbon and exchange resins. These treatment technologies are generally expensive, inefficient, and can take decades to reach treatment objectives. The application of in situ remedial technologies is common for a wide variety of contaminants of concern such as petroleum hydrocarbons and volatile organic compounds; however, for PFASs, the technology is currently emerging. This study involved the application of colloidal activated carbon at a site in Canada where the PFASs perfluorooctanoate (PFOA) and perfluorooctane sulfonic acid (PFOS) were detected in groundwater at concentrations up to 3,260 ng/L and 1,450 ng/L, respectively. The shallow silty‐sand aquifer was anaerobic with an average linear groundwater velocity of approximately 2.6 meters per day. The colloidal activated carbon was applied using direct‐push technology and PFOA and PFOS concentrations below 30 ng/L were subsequently measured in groundwater samples over an 18‐month period. With the exception of perfluoroundecanoic acid, which was detected at 20 ng/L and perfluorooctanesulfonate which was detected at 40 ng/L after 18 months, all PFASs were below their respective method detection limits in all postinjection samples. Colloidal activated carbon was successfully distributed within the target zone of the impacted aquifer with the activated carbon being measured in cores up to 5 meters from the injection point. This case study suggests that colloidal activated carbon can be successfully applied to address low to moderate concentrations of PFASs within similar shallow anaerobic aquifers.  相似文献   
97.
Regional Environmental Change - A network of winter roads that consists of snow-ice roads over land, muskeg, and frozen lakes and rivers has been and continues to be a critical seasonal lifeline in...  相似文献   
98.
Over the past decades, information and communication technologies (ICT) established themselves as the key force towards more effective and efficient usage of resources in our society, namely via better use of available information, automation, stakeholder involvement, and decision support. By analyzing recent advancements in knowledge offered by ICT, it is possible to identify their strong correlation with the principles, aims, and interests of sustainability science, which can be highly inspired by ICT-intensive domains. In this paper, we study the theoretical background on system thinking as an interpretative lens able to support better understanding of dimensions and dynamics involved in the domain of sustainability, and examine the role of ICT in advancing sustainability goals. Then, we analyze the domain of the Smart Grid as a prominent example of complex technological contribution in face of the challenges of sustainability, and present the insights from this domain, which are turned into sustainability guidelines for other domains, linking smartness, and sustainability in the light of systems thinking and Smart Grid experience. In summary, the core recommendation of this work is the employment of information technology to widen the scope of the sustainability “game” by sliding activities in time and space, and in engaging more “players” in the game, which is now made possible thanks to the advancement in ICT.  相似文献   
99.
The origin of a series of atmospheric radioxenon events detected at the Comprehensive Test Ban Treaty Organisation (CTBTO) International Monitoring System site in Melbourne, Australia, between November 2008 and February 2009 was investigated. Backward tracking analyses indicated that the events were consistent with releases associated with hot commission testing of the Australian Nuclear Science Technology Organisation (ANSTO) radiopharmaceutical production facility in Sydney, Australia. Forward dispersion analyses were used to estimate release magnitudes and transport times. The estimated 133Xe release magnitude of the largest event (between 0.2 and 34 TBq over a 2 d window), was in close agreement with the stack emission releases estimated by the facility for this time period (between 0.5 and 2 TBq). Modelling of irradiation conditions and theoretical radioxenon emission rates were undertaken and provided further evidence that the Melbourne detections originated from this radiopharmaceutical production facility. These findings do not have public health implications. This is the first comprehensive study of atmospheric radioxenon measurements and releases in Australia.  相似文献   
100.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for aerobic biodegradation of aromatic hydrocarbons and methyl tert‐butyl ether (MtBE; a common oxygenate additive in gasoline) in saline, high temperature (>30° C) groundwater. Aquifer, sediment, and groundwater samples from two sites, one in Canada and another in Saudi Arabia, were incubated for 106 days to evaluate the changes in select hydrocarbon and MtBE concentrations and microbial community structure. Almost complete biodegradation of the aromatic hydrocarbons was found in the Saudi Arabian microcosm samples whereas the Canadian microcosm samples showed no significant biodegradation during the laboratory testing. MtBE degradation was not observed in either set of microcosms. Denaturing gradient gel electrophoresis analyses showed that, while the Canadian microorganisms were the most diverse, they showed little response during incubation. The microbial communities for the Saudi Arabian sample contained significant numbers of microorganisms capable of hydrocarbon degradation which increased during incubation. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of enhanced aerobic biodegradation on a high temperature, saline petroleum hydrocarbon plume. Dissolved oxygen was delivered to the subsurface using a series of oxygen diffusion emitters installed perpendicular to groundwater flow, which created a reactive zone. Results obtained from the seven‐month field trial indicated that all the target compounds decreased with removal percentages varying between 33 percent for the trimethylbenzenes to greater than 80 percent for the BTEX compounds. MtBE decreased 40 percent on average whereas naphthalene was reduced 85 percent on average. Examination of the microbial population upgradient and downgradient of the emitter reactive zone suggested that the bacteria population went from an anaerobic, sulfate‐reducing dominated population to one dominated by a heterotrophic aerobic bacteria dominant population. These studies illustrate that field aerobic biodegradation may exceed expectations derived from simple laboratory microcosm experiments. Also, high salinity and elevated groundwater temperature do not appear to inhibit in situ aerobic biorestoration. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号