首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   7篇
  国内免费   1篇
安全科学   5篇
废物处理   24篇
环保管理   31篇
综合类   9篇
基础理论   32篇
污染及防治   29篇
评价与监测   7篇
社会与环境   5篇
灾害及防治   2篇
  2023年   2篇
  2021年   2篇
  2020年   1篇
  2019年   7篇
  2018年   4篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   7篇
  2013年   13篇
  2012年   14篇
  2011年   6篇
  2010年   9篇
  2009年   8篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   5篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
  1991年   2篇
  1986年   1篇
  1979年   1篇
  1972年   1篇
  1969年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
81.
Per‐ and polyfluoroalkyl substances (PFAS) have been identified by many regulatory agencies as emerging contaminants of concern in a variety of media including groundwater. Currently, there are limited technologies available to treat PFAS in groundwater with the most frequently applied approach being extraction (i.e., pump and treat). While this approach can be effective in containing PFAS plumes, previous studies of pump and treat programs have met with limited remedial success. In situ treatment studies of PFAS have been limited to laboratory and a few field studies. Six pilot‐scale field studies were conducted in an unconfined sand aquifer coimpacted by petroleum hydrocarbon along with PFAS to determine if a variety of reagents could be used to attenuate dissolved phase PFAS in the presence of petroleum hydrocarbons. The six reagents consisted of two chemical oxidants, hydrogen peroxide (H2O2) and sodium persulfate (Na2S2O8), and four adsorbents, powdered activated carbon (PAC), colloidal activated carbon (CAC), ion‐exchange resin (IER), and biochar. The reagents were injected using direct push technology in six permeable reactive zone (PRZ) configurations. Groundwater concentrations of various PFAS entering the PRZs ranged up to 24,000 µg/L perfluoropentanoic acid, up to 6,200 µg/L pentafluorobenzoic acid, up to 16,100 µg/L perfluorohexanoic acid, up to 6,080 µg/L perfluoroheptanoic acid, up to 450 µg/L perfluorooctanoic acid, and up to 140 µg/L perfluorononanoic acid. Performance groundwater sampling within and downgradient of the PRZs occurred for up to 18 months using single and multilevel monitoring wells. Results of groundwater sampling indicated that the PFAS were not treated by either the persulfate nor the peroxide and, in some cases, the PFAS increased in concentration immediately following the injection of peroxide and persulfate. Concentrations of PFAS in groundwater sampled within the PAC, CAC, IER, and biochar PRZs immediately after the injection were determined to be less than the method detection limits. Analyses of groundwater samples over the 18‐month monitoring period, indicated that all the PRZs exhibited partial or complete breakthrough of the PFAS over the 18‐month monitoring period, except for the CAC PRZ which showed no PFAS breakthrough. Analysis of cores for the CAC, PAC, and biochar PRZs suggested that the CAC was uniformly distributed within the target injection zone, whereas the PAC and biochar showed preferential injection into a thin coarse‐sand seam. Similarly, analysis of the sand packs of monitoring wells installed before the injection of the CAC, PAC, and biochar indicated that the sand packs of the PAC and biochar preferentially accumulated the reagents compared with the reagent concentrations within the surrounding aquifer by up to 18 times.  相似文献   
82.
A hyperspectral imaging system was used to monitor vegetation during a subsurface controlled release of carbon dioxide (CO2). From August 3 to 10, 2007, 0.3 tons CO2/day were released through a 70 m horizontal pipe located at a nominal depth of 1.8 m below the surface. Hyperspectral images of alfalfa plants were collected during the controlled release and used along with classification tree analysis to study changes in the reflectance spectra as a function of perpendicular distance from the horizontal pipe. Changes in the reflectance spectra near the red edge (650–750 nm) were observed over the course of the controlled release experiment for plants within a perpendicular distance of 1 m of the release pipe. These results indicate monitoring vegetation over a carbon sequestration site has the potential to allow monitoring of the integrity of the CO2 storage.  相似文献   
83.
84.

Introduction  

The unhairing step, a part of the beamhouse process, is particularly polluting, generating an alkaline wastewater with high concentrations of organic and inorganic matter. The aim of this study was to evaluate the treatment of this industrial wastewater using a combination of biological and microfiltration processes.  相似文献   
85.
Recent studies have demonstrated the geomorphic complexity and wide range of hydrologic regimes found in alpine headwater channels that provide complex habitats for aquatic taxa. These geohydrologic elements are fundamental to better understand patterns in species assemblages and indicator taxa and are necessary to aquatic monitoring protocols that aim to track changes in physical conditions. Complex physical variables shape many biological and ecological traits, including life history strategies, but these mechanisms can only be understood if critical physical variables are adequately represented within the sampling framework. To better align sampling design protocols with current geohydrologic knowledge, we present a conceptual framework that incorporates regional-scale conditions, basin-scale longitudinal profiles, valley-scale glacial macroform structure, valley segment-scale (i.e., colluvial, alluvial, and bedrock), and reach-scale channel types. At the valley segment- and reach-scales, these hierarchical levels are associated with differences in streamflow and sediment regime, water source contribution and water temperature. Examples of linked physical-ecological hypotheses placed in a landscape context and a case study using the proposed framework are presented to demonstrate the usefulness of this approach for monitoring complex temporal and spatial patterns and processes in glaciated basins. This approach is meant to aid in comparisons between mountain regions on a global scale and to improve management of potentially endangered alpine species affected by climate change and other stressors.  相似文献   
86.
A series of laboratory microcosm experiments and a field pilot test were performed to evaluate the potential for in situ chemical oxidation (ISCO) of aromatic hydrocarbons and methyl tertiary butyl ether (MTBE), a common oxygenate additive in gasoline, in saline, high temperature (more than 30 °C) groundwater. Groundwater samples from a site in Saudi Arabia were amended in the laboratory portion of the study with the chemical oxidants, sodium persulfate (Na2S2O8) and sodium percarbonate (Na2(CO3)2), to evaluate the changes in select hydrocarbon and MTBE concentrations with time. Almost complete degradation of the aromatic hydrocarbons, naphthalene and trimethylbenzenes (TMBs), was found in the groundwater sample amended with persulfate, whereas the percarbonate‐amended sample showed little to no degradation of the target hydrocarbon compounds in the laboratory. Isotopic analyses of the persulfate‐amended samples suggested that C‐isotope fractionation for xylenes occurred after approximately 30 percent reduction in concentration with a decline of about 1 percent in the δ13C values of xylenes. Based on the laboratory results, pilot‐scale testing at the Saudi Arabian field site was carried out to evaluate the effectiveness of chemical oxidation using nonactivated persulfate on a high temperature, saline petroleum hydrocarbon plume. Approximately 1,750 kg of Na2S2O8 was delivered to the subsurface using a series of injection wells over three injection events. Results obtained from the pilot test indicated that all the target compounds decreased with removal percentages varying between 86 percent for naphthalene and more than 99 percent for the MTBE and TMBs. The benzene, toluene, ethylbenzene, and xylene compounds decreased to 98 percent on average. Examination of the microbial population upgradient and downgradient of the ISCO reactive zone suggested that a bacteria population was present following the ISCO injections with sulfate‐reducing bacteria (SRB) being the dominant bacteria present. Measurements of inorganic parameters during injection and postinjection indicated that the pH of the groundwater remained neutral following injections, whereas the oxidation–reduction potential remained anaerobic throughout the injection zone with time. Nitrate concentrations decreased within the injection zone, suggesting that the nitrate may have been consumed by denitrification reactions, whereas sulfate concentrations increased as expected within the reactive zone, suggesting that the persulfate produced sulfate. Overall, the injection of the oxidant persulfate was shown to be an effective approach to treat dissolved aromatic and associated hydrocarbons within the groundwater. In addition, the generation of sulfate as a byproduct was an added benefit, as the sulfate could be utilized by SRBs present within the subsurface to further biodegrade any remaining hydrocarbons. ©2015 Wiley Periodicals, Inc.  相似文献   
87.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   
88.
The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH4)2SO4]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23–92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8).
Figure
?  相似文献   
89.
Abstract

Deployment of continuous analyzers in the Southeastern Aerosol Research and Characterization Study (SEARCH) network began in 1998 and continues today as new technologies are developed. Measurement of fine particulate matter (PM2.5) mass is performed using a dried, 30 °C tapered element oscillating microbalance (TEOM). TEOM measurements are complemented by observations of light scattering by nephelometry. Measurements of major constituents include: (1) SO4 2? via reduction to SO2; (2) NH4 + and NO3 ? via respective catalytic oxidation and reduction to NO, (3) black carbon (BC) by optical absorption, (4) total carbon by combustion to CO2, and (5) organic carbon by difference between the latter two measurements. Several illustrative examples of continuous data from the SEARCH network are presented. A distinctive composite annual average diurnal pattern is observed for PM2.5 mass, nitrate, and BC, likely indicating the influence of traffic-related emissions, growth, and break up of the boundary layer and formation of ammonium nitrate. Examination of PM2.5 components indicates the need to better understand the continuous composition of the unmeasured “other” category, because it contributes a significant fraction to total mass during periods of high PM2.5 loading. Selected episodes are presented to illustrate applications of SEARCH data. An SO2 conversion rate of 0.2%/hr is derived from an observation of a plume from a coal-fired power plant during early spring, and the importance of local, rural sources of NH3 to the formation of ammonium nitrate in particulate matter (PM) is demonstrated.  相似文献   
90.
Abstract

The Southeastern Aerosol Research and Characterization Study (SEARCH) was implemented in 1998–1999 to provide data and analyses for the investigation of the sources, chemical speciation, and long-term trends of fine particulate matter (PM2.5) and coarse particulate matter (PM10–2.5) in the Southeastern United States. This work is an initial analysis of 5 years (1999–2003) of filter-based PM2.5 and PM10–2.5 data from SEARCH. We find that annual PM2.5 design values were consistently above the National Ambient Air Quality Standards (NAAQS) 15 µg/m3 annual standard only at monitoring sites in the two largest urban areas (Atlanta, GA, and North Birmingham, AL). Other sites in the network had annual design values below the standard, and no site had daily design values above the NAAQS 65 µg/m3 daily standard. Using a particle composition monitor designed specifically for SEARCH, we found that volatilization losses of nitrate, ammonium, and organic carbon must be accounted for to accurately characterize atmospheric particulate matter. In particular, the federal reference method for PM2.5 underestimates mass by 3–7% as a result of these volatilization losses. Organic matter (OM) and sulfate account for ≥60% of PM2.5 mass at SEARCH sites, whereas major metal oxides (MMO) and unidentified components (“other”) account for ≥80% of PM10–2.5 mass. Limited data suggest that much of the unidentified mass in PM10–2.5 may be OM. For paired comparisons of urban-rural sites, differences in PM2.5 mass are explained, in large part, by higher OM and black carbon at the urban site. For PM10, higher urban concentrations are explained by higher MMO and “other.” Annual means for PM2.5 and PM10–2.5 mass and major components demonstrate substantial declines at all of the SEARCH sites over the 1999–2003 period (10–20% in the case of PM2.5, dominated by 14–20% declines in sulfate and 11–26% declines in OM, and 14–25% in the case of PM10–2.5, dominated by 17–30% declines in MMO and 14–31% declines in “ other”). Although declining national emissions of sulfur dioxide and anthropogenic carbon may account for a portion of the observed declines, additional investigation will be necessary to establish a quantitative assessment, especially regarding trends in local and regional emissions, primary carbon emissions, and meteorology.  相似文献   
[首页] « 上一页 [4] [5] [6] [7] [8] 9 [10] [11] [12] [13] [14] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号