首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   7篇
  国内免费   7篇
安全科学   23篇
废物处理   23篇
环保管理   133篇
综合类   48篇
基础理论   116篇
环境理论   1篇
污染及防治   96篇
评价与监测   42篇
社会与环境   13篇
灾害及防治   6篇
  2023年   3篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   14篇
  2015年   13篇
  2014年   11篇
  2013年   47篇
  2012年   16篇
  2011年   28篇
  2010年   17篇
  2009年   18篇
  2008年   27篇
  2007年   28篇
  2006年   15篇
  2005年   14篇
  2004年   9篇
  2003年   23篇
  2002年   15篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   15篇
  1997年   10篇
  1996年   7篇
  1995年   7篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   3篇
  1985年   4篇
  1984年   9篇
  1983年   8篇
  1982年   6篇
  1981年   6篇
  1980年   6篇
  1979年   5篇
  1978年   5篇
  1977年   5篇
  1975年   3篇
  1974年   4篇
  1973年   8篇
排序方式: 共有501条查询结果,搜索用时 15 毫秒
181.
Environmental Science and Pollution Research - PM10 was collected during an EMEP winter campaign of 2017–2018 in two urban background sites in Barcelona (BCN) and Granada (GRA), two...  相似文献   
182.
China has been committed to achieving carbon neutrality by 2060. China’s pledge of carbon neutrality will play an essential role in galvanising global climate action, which has been largely deferred by the Covid-19 pandemic. China’s carbon neutrality could reduce global warming by approximately 0.2–0.3 °C and save around 1.8 million people from premature death due to air pollution. Along with domestic benefits, China’s pledge of carbon neutrality is a “game-changer” for global climate action and can inspire other large carbon emitters to contribute actively to mitigate carbon emissions, particularly countries along the Belt and Road Initiative (BRI) routes. In order to achieve carbon neutrality by 2060, it is necessary to decarbonise all sectors in China, including energy, industry, transportation, construction, and agriculture. However, this transition will be very challenging, because major technological breakthroughs and large-scale investments are required. Strong policies and implementation plans are essential, including sustainable demand, decarbonizing electricity, electrification, fuel switching, and negative emissions. In particular, if China can peak carbon emissions earlier, it can lower the costs of the carbon neutral transition and make it easier to do so over a longer time horizon. China’s pledge of carbon neutrality by 2060 and recent pledges at the 26th UN Climate Change Conference of the Parties (COP26) are significant contributions and critical steps for global climate action. However, countries worldwide need to achieve carbon neutrality to keep the global temperature from growing beyond the level that will cause catastrophic damages globally.  相似文献   
183.
The Svalbard Shoreline Field Trials quantified the effectiveness of sediment relocation, mixing, bioremediation, bioremediation combined with mixing, and natural attenuation as options for the in situ treatment of oiled mixed-sediment (sand and pebble) shorelines. These treatments were applied to oiled plots located in the upper beach at three experimental sites, each with different sediment character and wave-energy exposure. Systematic monitoring was carried out over a 400-day period to quantify oil removal and to document changes in the physical character of the beach, oil penetration, oil loading, movements of oil to the subtidal environment, biodegradation, toxicity, and to validate oil-mineral aggregate formation.The results of the monitoring confirmed that sediment relocation significantly accelerated the rate of oil removal and reduced oil persistence where oil was stranded on the beach face above the level of normal wave activity. Where the stranded oil was in the zone of wave action, sediment relocation accelerated the short-term (weeks) rate of oil loss from the intertidal sediments.Oil removal rates on a beach treated by mechanical mixing or tilling were not significantly higher than those associated with natural recovery. However there is evidence that mixing/tilling may have enhanced microbial activity for a limited period by increasing the permeability of the sediment.Changes in the chemical composition of the oil demonstrated that biodegradation was significant in this arctic environment and a bioremediation treatment protocol based on nutrient enrichment effectively doubled the rate of biodegradation. However, on an operational scale, the success of this treatment strategy was limited as physical processes were more important in causing oil loss from the beaches than biodegradation, even where this oil loss was stimulated by the bioremediation protocols.  相似文献   
184.
185.
186.
187.
Cr(VI) represents an environmental challenge in both soil and water as it is soluble and bioavailable over a wide range of pH. In previous investigations, Portulaca oleracea (a plant local to the United Arab Emirates (UAE)) demonstrated particular ability for the phytoextraction of Cr(VI) from calcareous soil of the UAE. In this publication, the results of the evaluation of P. oleracea phytoextraction of Cr(VI) from UAE soil at higher concentrations are reported. P. oleracea was exposed to nine different concentrations of Cr(VI) in soil from 0 to 400 mg kg?1. The uptake of Cr(VI) increased as its concentration in soil increased between 50 and 400 mg kg?1, with the most efficient removal in the range from 150 to 200 mg kg?1. The total chromium concentrations exceeded 4600 mg kg?1 in roots and 1400 mg kg?1 in stems, confirming the role of P. oleracea as an effective Cr(VI) accumulator. More than 95% of the accumulated Cr(VI) was reduced to the less toxic Cr(III) within the plant.  相似文献   
188.
Fernandez CW  Koide RT 《Ecology》2012,93(1):24-28
Ectomycorrhizal fungal tissues comprise a significant forest-litter pool. Ectomycorrhizal (EM) fungi may also influence the decomposition of other forest-litter components via competitive interactions with decomposer fungi and by ensheathing fine roots. Because of these direct and indirect effects of ectomycorrhizal fungi, the factors that control the decomposition of EM fungi will strongly control forest-litter decomposition as a whole and, thus, ecosystem nutrient and carbon cycling. Some have suggested that chitin, a component of fungal cell walls, reduces fungal tissue decomposition because it is relatively recalcitrant. We therefore examined the change in chitin concentrations of EM fungal tissues during decomposition. Our results show that chitin is not recalcitrant relative to other compounds in fungal tissues and that its concentration is positively related to the decomposition of fungal tissues. Variation existing among EM fungal isolates in chitin concentration suggests that EM fungal community structure influences C and nutrient cycling.  相似文献   
189.
Protandry, the earlier arrival of males than females to breeding areas, is widespread in birds, but its underlying mechanisms are far from well understood. The two, not mutually exclusive most highly supported hypotheses to explain avian protandry postulate that it has evolved from intrasexual male competition to acquire the best territories (“rank advantage” hypothesis) and/or to maximize the number of mates (“mate opportunity” hypothesis). We studied for two consecutive years the relative importance of both hypotheses in a population of pied flycatchers (Ficedula hypoleuca), a territorial songbird with a mixed mating strategy. We measured territory quality using a long-term dataset on nest occupation and breeding output, and we used molecular techniques to assess male fitness across the range of social and genetic mating options. Territory quality was unrelated to breeding date and had no influence on extra-pair paternity or social polygynous events. However, males breeding early increased their chances of becoming socially polygynous and/or of attaining extra-pair paternity and, as a consequence, increased their total reproductive success. These results support the “mate opportunity” hypothesis, suggesting that sexual selection is the main mechanism driving protandry in this population.  相似文献   
190.
In recent decades, dozens of studies have involved attempts to introduce native and desirable nonnative plant species into grasslands dominated by invasive weeds. The newly introduced plants have proved capable of establishing, but because they are rarely monitored for more than four years, it is unknown if they have a high likelihood of persisting and suppressing invaders for the long-term. Beyond invaded grasslands, this lack of long-term monitoring is a general problem plaguing efforts to reintroduce a range of taxa into a range of ecosystems. We introduced species from seed and then periodically measured plant abundances for nine years at one site and 15 years at a second site. To our knowledge, our 15-year data are the longest to date from a seeding experiment in invaded, never-cultivated grassland. At one site, three seeded grasses maintained high densities for three or more years, but then all or nearly all individuals died. At the second site, one grass performed similarly, but two other grasses proliferated and at least one greatly suppressed the dominant invader (Centaurea maculosa). In one study, our point estimate suggests that the seeded grass Thinopyrum intermedium reduced C. maculosa biomass by 93% 15 years after seeding. In some cases, data from three and fewer years after seeding falsely suggested that seeded species were capable of persisting within the invaded grassland. In other cases, data from as late as nine years after seeding falsely suggested seeded populations would not become large enough to suppress the invader. These results show that seeded species sometimes persist and suppress invaders for long periods, but short-term data cannot predict if, when, or where this will occur. Because short-term data are not predictive of long-term seeded species performances, additional long-term data are needed to identify effective practices, traits, and species for revegetating invaded grasslands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号