首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   467篇
  免费   5篇
  国内免费   11篇
安全科学   26篇
废物处理   18篇
环保管理   102篇
综合类   53篇
基础理论   83篇
污染及防治   128篇
评价与监测   42篇
社会与环境   26篇
灾害及防治   5篇
  2023年   5篇
  2022年   12篇
  2021年   15篇
  2020年   4篇
  2018年   11篇
  2017年   9篇
  2016年   16篇
  2015年   11篇
  2014年   14篇
  2013年   50篇
  2012年   10篇
  2011年   24篇
  2010年   19篇
  2009年   21篇
  2008年   21篇
  2007年   22篇
  2006年   19篇
  2005年   11篇
  2004年   16篇
  2003年   17篇
  2002年   19篇
  2001年   9篇
  2000年   5篇
  1999年   5篇
  1998年   9篇
  1997年   10篇
  1996年   8篇
  1995年   3篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1987年   3篇
  1985年   5篇
  1984年   4篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1979年   5篇
  1978年   2篇
  1975年   2篇
  1973年   2篇
  1968年   2篇
  1964年   2篇
  1963年   2篇
  1958年   2篇
  1957年   2篇
  1956年   3篇
  1955年   3篇
排序方式: 共有483条查询结果,搜索用时 15 毫秒
121.
Confined flow toward a single well of finite radius in an extensive aquifer of uniform transmissibility is studied under the assumption of time-dependent drawdown. Three particular cases are considered: (a) linear drawdown (including constant drawdown); (b) exponential drawdown; (c) periodic (sinusoidal) drawdown. The differential equation governing unsteady axial symmetric flow toward a single well in a confined aquifer is solved for the three different situations by the use of the Laplace transform method. The resulting expressions are integrated by adapting a modified Gemant scheme. General computer programs have been developed and operated for several combinations of characteristics. The results are plotted to show the effect of time dependent drawdown on the variation of the well discharge and the piezometric head distribution.  相似文献   
122.
ABSTRACT: The size, scale, and number of subwatersheds can affect a watershed modeling process and subsequent results. The objective of this study was to determine the appropriate level of subwatershed division for simulating flow, sediment, and nutrients over 30 years for four Iowa watersheds ranging in size from 2,000 to 18,000 km2 with the Soil and Water Assessment Tool (SWAT) model. The results of the analysis indicated that variation in the total number of subwatersheds had very little effect on streamflow. However, the opposite result was found for sediment, nitrate, and inorganic P; the optimal threshold subwatershed sizes, relative to the total drainage area for each watershed, required to adequately predict these three indicators were found to be around 3, 2, and 5 percent, respectively. Decreasing the size of the subwatersheds below these threshold levels does not significantly affect the predicted levels of these environmental indicators. These threshold subwatershed sizes can be used to optimize input data preparation requirements for SWAT analyses of other watersheds, especially those within a similar size range. The fact that different thresholds emerged for the different indicators also indicates the need for SWAT users to assess which indicators should have the highest priority in their analyses.  相似文献   
123.
Better management practices can counter deterioration of ground water quality. From 1991 through 1996 the influence of improved irrigation practices on ground water pesticide contamination was assessed at the Nebraska Management Systems Evaluation Area. Three 13.4-ha corn (Zea mays L.) fields were studied: a conventional furrow-irrigated field, a surge-irrigated field and a center pivot-irrigated field, and a center pivot-irrigated alfalfa (Medicago sativa L.) field. The corn fields received one identical banded application of Bicep (atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] + metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamidel) annually; the alfalfa field was untreated. Ground water samples were collected three times annually from 16 depths of 31 multilevel samplers. Six years of sample data indicated that a greater than 50% reduction in irrigation water on the corn management fields lowered average atrazine concentrations in the upper 1.5 m of the aquifer downgradient of the corn fields from approximately 5.5 to <0.5 microg L(-1). Increases in deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to atrazine molar ratios indicated that reducing water applications enhanced microbial degradation of atrazine in soil zones. The occurrence of peak herbicide loading in ground water was unpredictable but usually was associated with heavy precipitation within days of herbicide application. Focused recharge of storm runoff that ponded in the surge-irrigated field drainage ditch, in the upgradient road ditch, and at the downgradient end of the conventionally irrigated field was a major mechanism for vertical transport. Sprinkler irrigation technology limited areas for focused recharge and promoted significantly more soil microbial degradation of atrazine than furrow irrigation techniques and, thereby, improved ground water quality.  相似文献   
124.
Profiles of ground water pesticide concentrations beneath the Nebraska Management Systems Evaluation Area (MSEA) describe the effect of 20 yr of pesticide usage on ground water in the central Platte Valley of Nebraska. During the 6-yr (1991-1996) study, 14 pesticides and their transformation products were detected in 7848 ground water samples from the unconfined water table aquifer. Triazine and acetamide herbicides applied on the site and their transformation products had the highest frequencies of detection. Atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4,-diamine] concentrations decreased with depth and ground water age determined with 3H/3He dating techniques. Assuming equivalent atrazine input during the past 20 yr, the measured average changes in concentration with depth (age) suggest an estimated half-life of >10 yr. Hydrolysis of atrazine and deethylatrazine (DEA; 2-chloro-4-amino-6-isopropylamino-s-triazine) to hydroxyatrazine [6-hydroxy-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine] appeared to be the major degradation route. Aqueous hydroxyatrazine concentrations are governed by sorption on the saturated sediments. Atrazine was detected in the confined Ogallala aquifer in ultra-trace concentrations (0.003 microg L(-1)); however, the possibility of introduction during reverse circulation drilling of these deep wells cannot be eliminated. In fall 1997 sampling, metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] was detected in 57% of the 230 samples. Metolachlor oxanilic acid [(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl) amino]oxo-acetic acid] was detected in most samples. In ground water profiles, concentrations of metolachlor ethane sulfonic acid [2-[(ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxo-ethanesulfonic acid] exceeded those of deethylatrazine. Alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide] was detected in <1% of the samples; however, alachlor ethane sulfonic acid [2-[(2,6-diethylphenyl)(methoxymethyl)amino]-2-oxoethanesulfonic acid] was present in most samples (63%) and was an indicator of past alachlor use.  相似文献   
125.
Community involvement is fundamental to the management of multijurisdictional river basins but, in practice, is very difficult to achieve. The Murray-Darling basin, in Australia, and the Mekong River basin in Southeast Asia are both cooperatively managed multijurisdictional river basins where the management authorities have expressed an aim of community involvement. In the Murray-Darling basin vigorous efforts have promoted a culture of community consultation throughout each of the state jurisdictions involved, although true participation has not necessarily been achieved. In the Mekong basin the community is much more diverse and the successes so far have been largely at the local level, involving action in subsections of the basin. These case studies suggest that community involvement in the form of community consultation across large multijurisdictional river basins is achievable, but more comprehensive participation is not necessarily possible.  相似文献   
126.
/ Whereas habitat conservation plans (HCPs) have been intended to provide comprehensive environmental mitigation for multiple species, they often narrow in focus to one species and either one mitigation site or unspecified sites. We developed an indicators framework from which to rate land units for their ecological integrity, collateral values (nonbiological qualities that can improve conservation), and restoration and conservation opportunities. The ratings of land units were guided by the tenets of conservation biology and principles of landscape and ecosystem ecology, and they were made using existing physical and floral information managed on a GIS. As an example of how the indicators approach can be used for HCPs, the 29 legally rare species targeted by the Yolo County HCP were each associated with vegetation complexes and agricultural crops, the maps of which were used for rating some of the landscape indices. The ratings were mapped so that mitigation can be directed to the places on the landscape where the legally rare species should benefit most from conservation practices. The most highly rated land units for conservation opportunity occurred along streams and sloughs, especially where they emerged from the foothills and entered the Central Valley and where the two largest creeks intersected the Sacramento River flood basin. We recommend that priority be given to mitigation or conservation at the most highly rated land units. The indices were easy to measure and can be used with other tools to monitor the mitigation success. The indicators framework can be applied to other large-area planning efforts with some modifications.KEY WORDS: Ecosystem; Indicators; Landscape; Mitigation; Planning; Yolo County; California  相似文献   
127.
ABSTRACT: Geomorphic processes may partly determine channel geometry. Soil particle uplift during freezing and thawing cycles and bank sloughing during wetting and drying periods were observed. Soil properties and channel dimension were measured to determine the dominant processes controlling channel geometry in eight small (mean area 0.096 km2) drainages in Logan Canyon, Utah. Soil cohesion was low (plasticity index > 15) for all but one of the drainages sampled. Basin scale geomorphic variables were examined to determine if they control channel dimension. Bankfull width was highly correlated to channel length and valley length with r2 values of 0.85 and 0.84, respectively. A strong canonical correlation (0.64) showed that distance from the watershed divide, bank liquid limit, and bank sand content were effective predictor variables of bankfull width and depth. The interrelations between geomorphic and pedogenic processes were the strongest determinants of ephemeral channel dimension in this study.  相似文献   
128.
The United States Congress established Grand Canyon National Park in 1919 to preserve for posterity the outstanding natural attributes of the canyon cut by the Colorado River. In some cases National Park Service attempts to maintain Grand Canyon's natural environment have been thwarted by activities outside the park. One of the most obvious external threats is Glen Canyon Dam, only 26 km upstream from the park boundary. Constructed in 1963, this gigantic dam has greatly altered the physicochemical and biological characteristics of 446 km of the Colorado River in Grand Canyon National Park. The river's aquatic ecosystem has been greatly modified through the loss of indigenous species and the addition of numerous exotics. We consider this anexotic ecosystem. The riparian ecosystem has been less modified, with addition of a few exotics and no loss of natives—this we consider anaturalized ecosystem.The great dilemma now faced by park managers is that, after 20 years of managing resources along a river controlled by Glen Canyon Dam, the Bureau of Reclamation has proposed major changes in operational procedures for the dam. Scientists and managers from the National Park Service, Bureau of Reclamation, and cooperating federal and state resource management agencies are using a systems analysis approach to examine the impacts of various Colorado River flow regimes on aquatic, riparian, and recreational parameters in the park. This approach will help in the development of management alternatives designed to permit the most efficient use of that river's natural resources without their destruction.  相似文献   
129.
The Quality–Assessed Agrichemical Contaminant Database for Nebraska Ground Water is a unique repository of nitrate and pesticide data collected by federal, state, and local agencies. Each contaminant concentration in the database has been evaluated based upon well–defined criteria that address completeness of the well–attribute data, analytical method and field and laboratory quality control practices and assigned to one of five quality levels. The quality assessment level always accompanies the contaminant concentration so that the end–user knows the quality assurance effort expended in the acquisition of the data, can select comparable data, and choose data whose quality assurance effort is commensurate with project objectives. The database can be viewed and queried on–line; downloaded in its entirety; or imported to a spreadsheet or a geographic information system. Setting criteria for data quality and assessing the level of quality have resulted in significant increases in the percentages of high quality (Levels 3–5) nitrate and pesticide data. These high quality data presently constitute 52% of the nitrate and 55% of the pesticide data.  相似文献   
130.
This risk assessment on dichloromethane was carried out specifically for the marine environment, following methodology given in the EU risk assessment Regulation (1488/94) and Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of collection and evaluation of data on effects and environmental concentrations from analytical monitoring programs in large rivers and estuaries in the North Sea area. The risk is indicated by the ratio of 'predicted environmental concentrations' (PEC) to 'predicted no-effect concentrations' (PNEC) for the marine aquatic environment. In total, 23 studies for fish, 17 studies for invertebrates and 6 studies for algae were evaluated. Both acute and chronic toxicity studies were taken into account and appropriate assessment factors used to define a PNEC value of 830 microg/l. Most of the available monitoring data apply to rivers and estuaries and were used to calculate PECs. The most recent data (1983--1995) support a typical PEC for dichloromethane lower than 0.2 microg/l and a worst case PEC of 13.6 microg/l. Dichloromethane is not a 'toxic, persistent and liable to bioaccumulate' substance sensu the Oslo and Paris Conventions for the Prevention of Marine Pollution (OSPAR-DYNAMEC). The calculated PEC/PNEC ratios give margins of 60 to 4000 between the PNEC and PEC, dilution within the sea would further increase these margins. It can be concluded that the present use of dichloromethane does not present a risk to the marine aquatic environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号