首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44301篇
  免费   479篇
  国内免费   405篇
安全科学   1405篇
废物处理   2116篇
环保管理   5880篇
综合类   6430篇
基础理论   11605篇
环境理论   12篇
污染及防治   11283篇
评价与监测   3254篇
社会与环境   2919篇
灾害及防治   281篇
  2023年   249篇
  2022年   425篇
  2021年   500篇
  2020年   322篇
  2019年   370篇
  2018年   664篇
  2017年   687篇
  2016年   1094篇
  2015年   779篇
  2014年   1202篇
  2013年   3690篇
  2012年   1478篇
  2011年   1942篇
  2010年   1639篇
  2009年   1686篇
  2008年   1994篇
  2007年   2027篇
  2006年   1797篇
  2005年   1574篇
  2004年   1538篇
  2003年   1478篇
  2002年   1385篇
  2001年   1730篇
  2000年   1213篇
  1999年   779篇
  1998年   569篇
  1997年   567篇
  1996年   621篇
  1995年   653篇
  1994年   574篇
  1993年   515篇
  1992年   534篇
  1991年   501篇
  1990年   475篇
  1989年   487篇
  1988年   445篇
  1987年   360篇
  1986年   331篇
  1985年   342篇
  1984年   390篇
  1983年   372篇
  1982年   415篇
  1981年   331篇
  1980年   259篇
  1979年   298篇
  1978年   257篇
  1977年   213篇
  1976年   200篇
  1975年   203篇
  1973年   233篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
2.
Intensive human exploitation of the Antarctic fur seal (Arctocephalus gazella) in its primary population centre on sub-Antarctic South Georgia, as well as on other sub-Antarctic islands and parts of the South Shetland Islands, in the eighteenth and nineteenth centuries rapidly brought populations to the brink of extinction. The species has now recovered throughout its original distribution. Non-breeding and yearling seals, almost entirely males, from the South Georgia population now disperse in the summer months far more widely and in higher numbers than there is evidence for taking place in the pre-exploitation era. Large numbers now haul out in coastal terrestrial habitats in the South Orkney Islands and also along the north-east and west coast of the Antarctic Peninsula to at least Marguerite Bay. In these previously less- or non-visited areas, the seals cause levels of damage likely never to have been experienced previously to fragile terrestrial habitats through trampling and over-fertilisation, as well as eutrophication of sensitive freshwater ecosystems. This increased area of summer impact is likely to have further synergies with aspects of regional climate change, including reduction in extent and duration of sea ice permitting seals access farther south, and changes in krill abundance and distribution. The extent and conservation value of terrestrial habitats and biodiversity now threatened by fur seal distribution expansion, and the multiple anthropogenic factors acting in synergy both historically and to the present day, present a new and as yet unaddressed challenge to the agencies charged with ensuring the protection and conservation of Antarctica’s unique ecosystems.  相似文献   
3.
Using solid state 13C NMR data and elemental composition in a molecular mixing model, we estimated the molecular components of the organic matter in 16 recycled organic (RO) wastes representative of the major materials generated in the Sydney basin area. Close correspondence was found between the measured NMR signal intensities and those predicted by the model for all RO wastes except for poultry manure char. Molecular nature of the organic matter differed widely between the RO wastes. As a proportion of organic C, carbohydrate C ranged from 0.07 to 0.63, protein C from <0.01 to 0.66, lignin C from <0.01 to 0.31, aliphatic C from 0.09 to 0.73, carbonyl C from 0.02 to 0.23, and char C from 0 to 0.45. This method is considered preferable to techniques involving imprecise extraction methods for RO wastes. Molecular composition data has great potential as a predictor of RO waste soil carbon and nutrient outcomes.  相似文献   
4.
This paper investigates the effects of accelerated carbonation on the characteristics of bottom ash from refuse derived fuel (RDF) incineration, in terms of CO2 uptake, heavy metal leaching and mineralogy of different particle size fractions. Accelerated aqueous carbonation batch experiments were performed to assess the influence of operating parameters (temperature, CO2 pressure and L/S ratio) on reaction kinetics. Pressure was found to be the most relevant parameter affecting the carbonation yield. This was also found to be largely dependent on the specific BA fraction treated, with CO2 uptakes ranging from ~4% for the coarse fractions to ~14% for the finest one. Carbonation affected both the mineralogical characteristics of bottom ash, with the appearance of neo-formation minerals, and the leaching behaviour of the material, which was found to be mainly related to the change upon carbonation in the natural pH of the ash.  相似文献   
5.
This paper investigates the changes of mineralogical composition of bottom ash in the environment. The chemical and mineralogical bulk composition was determined by X-ray fluorescence (XRF) and X-ray powder diffraction (XRPD) Rietveld method. Single bottom ash particles were investigated by optical microscopy, scanning electron microscopy with quantitative energy-dispersive X-ray microanalysis (SEM/EDX) and electron probe micro analysis (EPMA). SEM/EDX and EPMA are valuable complement to bulk analysis and provide means for rapid and sensitive multi-elemental analysis of ash particles. The fresh bottom ash consists of amorphous (>30 wt.%) and major crystalline phases (>1 wt.%) such as silicates, oxides and carbonates. The mineral assemblage of the fresh bottom ash is clearly unstable and an aging process occurs by reaction towards an equilibrium mineral phase composition in the environmental conditions. The significant decrease of anhydrite and amorphous contents was observed in the aged bottom ash, leading to the formation of ettringite, hydrocalumite and rosenhahnite under atmospheric conditions. In the water-treated sample, the calcite contents increased significantly, but ettringite was altered by the dissolution and precipitation processes in part, to produce gypsum, while the remaining part reacted with chloride to form hydrocalumite. Gypsum and other Ca based minerals may take up substantial amounts of heavy metals and subsequently control leaching behaviour of bottom ash.  相似文献   
6.
Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non-equilibrium desorption model. Good agreement was found between the two sets of data.  相似文献   
7.
The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 °C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 ± 36 ml CH4/d before the addition of glycerol and 2353 ± 94 ml CH4/d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate (μmax) and the saturation constant (KS) of glycerol were 0.149 ± 0.015 h?1 and 0.276 ± 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.  相似文献   
8.
Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.  相似文献   
9.
Gas cleaning systems of MSW (Municipal Solid Waste) incinerators are characterised by the process employed to remove acid gases. The commonly used technologies for acid gas removal are: (1) dry treatment with Ca(OH)2 or (2) with NaHCO3, (3) semi-dry process with Ca(OH)2 and (4) wet scrubbing. In some recent plants beside a wet cleaning system, a dry neutralization with Ca(OH)2 is used. The goal is to reduce the amount of acid to be removed in the wet treatment and the liquid effluents produced. The influence of these different technologies on the electrical efficiency was investigated by a detailed simulation of a WTE (Waste To Energy) plant with a capacity of about 100,000 t/y of MSW. The effects of the different gas cleaning systems on electrical efficiency were significant. The difference of efficiency between the most advantageous technology, which is dry treatment with NaHCO3, and the least advantageous technology which is semi-dry treatment, is about 0.8%. A simple economic analysis showed that the few advantages of dry technologies can often be lost if the costs of chemicals and the disposal of products are considered.  相似文献   
10.
The numerical computer models that simulate municipal solid waste (MSW) bioreactor landfills have mainly two components – a biodegradation process module and a multi-phase flow module. The biodegradation model describes the chemical and microbiological processes. The models available to date include predefined solid waste biodegradation reactions and participating species. Some of these models allow changing the basic composition of solid waste. In a bioreactor landfill several processes like anaerobic and aerobic solids biodegradation, nitrogen and sulfate related processes, precipitation and dissolution of metals, and adsorption and gasification of various anthropogenic organic compounds occur simultaneously. These processes may involve reactions of several species and the available biochemical models for solid waste biodegradation do not provide users with the flexibility to simulate these processes by choice. This paper presents the development of a generalized biochemical process model BIOKEMOD-3P which can accommodate a large number of species and process reactions. This model is able to simulate bioreactor landfill operation in a completely mixed condition, when coupled with a multi-phase model it will be able to simulate a full-scale bioreactor landfill. This generalized biochemical model can simulate laboratory and pilot-scale operations in order to determine biochemical parameters important for simulation of full-scale operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号