首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11232篇
  免费   59篇
  国内免费   968篇
安全科学   379篇
废物处理   351篇
环保管理   1008篇
综合类   3721篇
基础理论   919篇
污染及防治   3900篇
评价与监测   1192篇
社会与环境   617篇
灾害及防治   172篇
  2023年   37篇
  2022年   62篇
  2021年   98篇
  2020年   44篇
  2019年   35篇
  2018年   46篇
  2017年   64篇
  2016年   46篇
  2015年   99篇
  2014年   64篇
  2013年   48篇
  2012年   817篇
  2011年   1105篇
  2010年   168篇
  2009年   322篇
  2008年   1024篇
  2007年   1014篇
  2006年   804篇
  2005年   722篇
  2004年   603篇
  2003年   639篇
  2002年   591篇
  2001年   375篇
  2000年   302篇
  1999年   124篇
  1998年   40篇
  1997年   44篇
  1996年   64篇
  1995年   94篇
  1994年   64篇
  1993年   110篇
  1992年   103篇
  1991年   130篇
  1990年   133篇
  1989年   114篇
  1988年   214篇
  1987年   249篇
  1986年   125篇
  1985年   242篇
  1984年   222篇
  1983年   204篇
  1982年   166篇
  1981年   148篇
  1980年   129篇
  1979年   75篇
  1978年   79篇
  1977年   38篇
  1976年   63篇
  1975年   47篇
  1974年   69篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer, which was launched on the Earth Observing System (EOS) Terra satellite in 1999. Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The global and regional distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. This work also revealed that the seasonal cycles for CO are at a maximum in the spring and a minimum in the summer, with average concentrations ranging from 118 to 170 ppbv. The monthly average for CO shows a similar profile to that for O3. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O3 in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O3, which tend to give the apparent summer minimums.  相似文献   
42.
Suitable techniques have been developed for the extraction of arsenic species in a variety of biological and environmental samples from the Pak Pa-Nang Estuary and catchment, located in Southern Thailand, and for their determination using HPLC directly coupled with ICP-MS. The estuary catchment comprises a tin mining area and inhabitants of the region can suffer from various stages of arsenic poisoning. The important arsenic species, AsB, DMA, MMA, and inorganic arsenic (As III and V) have been determined in fish and crustacean samples to provide toxicological information on those fauna which contribute to the local diet. A Hamilton PRP-X100 anion-exchange HPLC system employing a step elution has been used successfully to achieve separation of the arsenic species. A nitric acid microwave digestion procedure, followed by carrier gas nitrogen addition- (N2)-ICP-MS analysis was used to measure total arsenic in sample digests and extracts. The arsenic speciation of the biological samples was preserved using a Trypsin enzymatic extraction procedure. Extraction efficiencies were high, with values of 82-102%(As) for fish and crustacean samples. Validation for these procedures was carried out using certified reference materials. Fish and crustacean samples from the Pak Pa-Nang Estuary showed a range for total arsenic concentration, up to 17 microg g(-1) dry mass. The major species of arsenic in all fauna samples taken was AsB, together with smaller quantities of DMA and, more importantly, inorganic As. For sediment samples, arsenic species were determined following phosphoric acid (1 M H3PO4) extraction in an open focused microwave system. A phosphate-based eluant, pH 6-7.5, with anion exchange HPLC coupled with ICP-MS was used for separation and detection of AsIII, AsV, MMA and DMA. The optimum conditions, identified using an estuarine sediment reference material (LGC), were achieved using 45 W power and a 20 minute heating period for extraction of 0.5 g sediment. The stability and recovery of arsenic species under the extraction conditions were also determined by a spiking procedure which included the estuarine sediment reference material. The results show good stability for all species after extraction with a variability of less than 10%. Total concentrations of arsenic in the sediments from the Pak Pa-Nang river catchment and the estuary covered the ranges 7-269 microg g(-1)and 4-20 [micro sign]g g(-1)(dry weight), respectively. AsV was the major species found in all the sediment samples with smaller quantities of AsIII. The presence of the more toxic inorganic forms of arsenic in both sediments and biota samples has implications for human health, particularly as they are readily 'available'.  相似文献   
43.
For detailed reconstructions of atmospheric metal deposition using peat cores from bogs, a comprehensive protocol for working with peat cores is proposed. The first step is to locate and determine suitable sampling sites in accordance with the principal goal of the study, the period of time of interest and the precision required. Using the state of the art procedures and field equipment, peat cores are collected in such a way as to provide high quality records for paleoenvironmental study. Pertinent field observations gathered during the fieldwork are recorded in a field report. Cores are kept frozen at -18 degree C until they can be prepared in the laboratory. Frozen peat cores are precisely cut into 1 cm slices using a stainless steel band saw with stainless steel blades. The outside edges of each slice are removed using a titanium knife to avoid any possible contamination which might have occurred during the sampling and handling stage. Each slice is split, with one-half kept frozen for future studies (archived), and the other half further subdivided for physical, chemical, and mineralogical analyses. Physical parameters such as ash and water contents, the bulk density and the degree of decomposition of the peat are determined using established methods. A subsample is dried overnight at 105 degree C in a drying oven and milled in a centrifugal mill with titanium sieve. Prior to any expensive and time consuming chemical procedures and analyses, the resulting powdered samples, after manual homogenisation, are measured for more than twenty-two major and trace elements using non-destructive X-Ray fluorescence (XRF) methods. This approach provides lots of valuable geochemical data which documents the natural geochemical processes which occur in the peat profiles and their possible effect on the trace metal profiles. The development, evaluation and use of peat cores from bogs as archives of high-resolution records of atmospheric deposition of mineral dust and trace elements have led to the development of many analytical procedures which now permit the measurement of a wide range of elements in peat samples such as lead and lead isotope ratios, mercury, arsenic, antimony, silver, molybdenum, thorium, uranium, rare earth elements. Radiometric methods (the carbon bomb pulse of (14)C, (210)Pb and conventional (14)C dating) are combined to allow reliable age-depth models to be reconstructed for each peat profile.  相似文献   
44.
Given the increasing interest in using peat bogs as archives of atmospheric metal deposition, the lack of validated sample preparation methods and suitable certified reference materials has hindered not only the quality assurance of the generated analytical data but also the interpretation and comparison of peat core metal profiles from different laboratories in the international community. Reference materials play an important role in the evaluation of the accuracy of analytical results and are essential parts of good laboratory practice. An ombrotrophic peat bog reference material has been developed by 14 laboratories from nine countries in an inter-laboratory comparison between February and October 2002. The material has been characterised for both acid-extractable and total concentrations of a range of elements, including Al, As, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, Na, Ni, P, Pb, Ti, V and Zn. The steps involved in the production of the reference material (i.e. collection and preparation, homogeneity and stability studies, and certification) are described in detail.  相似文献   
45.
Polycyclic aromatic hydrocarbons (PAH) include compounds with two or more fused benzene rings, many of which are carcinogens. Industrial sources produce hundreds of PAH, notably in the coke- and aluminium-producing industries. Because PAH are distributed at varying levels between gaseous and particulate phases, exposure assessment has been problematic. Here, we recommend that occupational exposures to naphthalene be considered as a potential surrogate for occupational PAH exposure for three reasons. Naphthalene is usually the most abundant PAH in a given workplace; naphthalene is present almost entirely in the gaseous phase and is, therefore, easily measured; and naphthalene offers several useful biomarkers, including the urinary metabolites 1- and 2-hydroxynaphthalene. These biomarkers can be used to evaluate total-body exposure to PAH, in much the same way that 1-hydroxypyrene has been applied. Using data from published sources, we show that log-transformed airborne levels of naphthalene are highly correlated with those of total PAH (minus naphthalene) in several industries (creosote impregnation: Pearson r= 0.815, coke production: r= 0.917, iron foundry: r= 0.854, aluminium production: r= 0.933). Furthermore, the slopes of the log-log regressions are close to one indicating that naphthalene levels are proportional to those of total PAH in those industries. We also demonstrate that log-transformed urinary levels of the hydroxynaphthalenes are highly correlated with those of 1-hydroxypyrene among coke oven workers and controls (r= 0.857 and 0.876), again with slopes of log-log regressions close to one. These results support the conjecture that naphthalene is a useful metric for occupational PAH exposure. Since naphthalene has also been shown to be a respiratory carcinogen in several animal studies, it is also argued that naphthalene exposures should be monitored per se in industries with high levels of PAH.  相似文献   
46.
The MAREL Iroise data buoy provides physico-chemical measurements acquired in surface marine water in continuous and autonomous mode. The water is pumped 1.5 m from below the surface through a sampling pipe and flows through the measuring cell located in the floating structure. Technological innovations implemented inside the measuring cell atop the buoy allow a continuous cleaning of the sensor, while injection of chloride ions into the circuit prevents biological fouling. Specific sensors for temperature, salinity, oxygen and fluorescence investigated in this paper have been evaluated to guarantee measurement precision over a 3 month period. A bi-directional link under Internet TCP-IP protocols is used for data, alarms and remote-control transmissions with the land-based data centre. Herein, we present a 29 month record for 4 parameters measured using a MAREL buoy moored in a coastal environment (Iroise Sea, Brest, France). The accuracy of the data provided by the buoy is assessed by comparison with measurements of sea water weekly sampled at the same site as part of SOMLIT (Service d'Observation du Milieu LIToral), the French network for monitoring of the coastal environment. Some particular events (impact of intensive fresh water discharges, dynamics of a fast phytoplankton bloom) are also presented, demonstrating the worth of monitoring a highly variable environment with a high frequency continuous reliable system.  相似文献   
47.
48.
To determine the heavy metal content in soil samples at contaminated locations, a static and time consuming procedure is used in most cases. Soil samples are collected and analyzed in the laboratory at high quality and high analytical costs. The demand by government and consultants for a more dynamic approach and by customers requiring performances in which analyses are performed in the field with immediate feedback of the analytical results, is growing. Especially during the follow-up of remediation projects or during the determination of the sampling strategy, field analyses are advisable. For this purpose four types of ED-XRF systems, ranging from portable up to high performance laboratory systems, have been evaluated. The evaluation criteria are based on the performance characteristics for all the ED-XRF systems such as limit of detection, accuracy and the measurement uncertainty on one hand, and also the influence of the sample pretreatment on the obtained results on the other hand. The study proved that the field portable system and the bench top system, placed in a mobile van, can be applied as field techniques, resulting in semi-quantitative analytical results. A limited homogenization of the analyzed sample significantly increases the representativeness of the soil sample. The ED-XRF systems can be differentiated by their limits of detection which are a factor of 10 to 20 higher for the portable system. The accuracy of the results and the measurement uncertainty also improved using the bench top system. Therefore, the selection criteria for applicability of both field systems are based on the required detection level and also the required accuracy of the results.  相似文献   
49.
This paper introduces the use of nutrition profiles as a first step in the development of a concept that is suitable for evaluating forest nutrition on the basis of large-scale foliar surveys. Nutrition profiles of a tree or stand were defined as the nutrient status, which accounts for all element concentrations, contents and interactions between two or more elements. Therefore a nutrition profile overcomes the shortcomings associated with the commonly used concepts for evaluating forest nutrition. Nutrition profiles can be calculated by means of a neural network, i.e. a self-organizing map, and an agglomerative clustering algorithm with pruning. As an example, nutrition profiles were calculated to describe the temporal variation in the mineral composition of Scots pine and Norway spruce needles in Finland between 1987 and 2000. The temporal trends in the frequency distribution of the nutrition profiles of Scots pine indicated that, between 1987 and 2000, the N, S, P, K, Ca, Mg and Al decreased, whereas the needle mass (NM) increased or remained unchanged. As there were no temporal trends in the frequency distribution of the nutrition profiles of Norway spruce, the mineral composition of the needles of Norway spruce needles subsequently did not change. Interpretation of the (lack of) temporal trends was outside the scope of this example. However, nutrition profiles prove to be a new and better concept for the evaluation of the mineral composition of large-scale surveys only when a biological interpretation of the nutrition profiles can be provided.  相似文献   
50.
Nahanni National Park Reserve is located at southwestern NWT-Yukon border. One of the first UNESCO World Heritage sites, Nahanni lies within Taiga Cordillera and Taiga Shield Ecozones. Base and precious metal mining occurred upstream of Nahanni prior to park establishment. Nahanni waters, sediments, fish, and caribou have naturally elevated metals levels. Baseline water, sediment and fish tissue quality data were collected and analyzed throughout Nahanni during 1988–91 and 1992–97. These two programs characterized how aquatic quality variables are naturally varying in space and time, affected by geology, stream flow, seasonality, and extreme meteorological and geological events. Possible anthropogenic causes of aquatic quality change were examined. Measured values were compared to existing Guidelines and site-specific objectives were established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号