首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
废物处理   1篇
环保管理   25篇
综合类   1篇
基础理论   1篇
污染及防治   3篇
评价与监测   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
Two total maximum daily load (TMDL) studies were performed for Linville Creek in Rockingham County, Virginia, to address bacterial and benthic impairments. The TMDL program is an integrated watershed management approach required by the Clean Water Act. This paper describes the procedures used by the Center for TMDL and Watershed Studies at Virginia Tech to develop the Linville Creek TMDLs and discusses the key lessons learned from and the ramifications of the procedures used in these and other similar TMDL studies. The bacterial impairment TMDL was developed using the Hydrological Simulation Program-Fortran (HSPF). Fecal coliform loads were estimated through an intensive source characterization process. The benthic impairment TMDL was developed using the Generalized Watershed Loading Function (GWLF) model and the reference watershed approach. The bacterial TMDL allocation scenario requires a 100% reduction in cattle manure direct-deposits to the stream, a 96% reduction in nonpoint-source loadings to the land surface, and a 95% reduction in wildlife direct-deposits to the stream. Sediment was identified as the primary benthic stressor. The TMDL allocation scenario for the benthic impairment requires an overall reduction of 12.3% of the existing sediment loads. Despite the many drawbacks associated with using watershed-scale models like HSPF and GWLF to develop TMDLs, the detailed watershed and pollutant-source characterization required to use these and similar models creates information that stakeholders need to select appropriate corrective measures to address the cause of the water quality impairment when implementing the TMDL.  相似文献   
12.
ABSTRACT: Land application of sewage sludge requires careful monitoring because of its potential for contamination of surface water and ground water. A rainfall simulator was used the investigate the effects of freshly applied sludge on infiltration, and on runoff of sediment and nutrients from agricultural crop lands. Rain was applied to 16 experimental field plots. A three-run sequence was used to simulate different initial moisture conditions. Runoff, sediment, and nutrient losses were monitored at the base of each plot during the simulated rainfall events. Sludge was surface applied and incorporated at conventionally-tilled plots and surface applied at no-till plots, at rates of 0, 75, 150 kg-N/ha. Steady-state infiltrability increased as a result of sludge application, although the no-till practice was more effective in increasing the infiltrability than the sludge application. No-till practices greatly reduced runoff, sediment, and nutrient losses from the sludge treated plots, relative to the conventional tillage practices. Incorporation of the sludge was effective in reducing nutrient yields at the conventionally-tilled plots. This effect was more pronounced during the third rainstorm, with wet initial conditions. Peak loadings of nutrients appeared during the rainstorm with wet initial conditions.  相似文献   
13.
The oxidation of alcohols and alkenes to aldehydes, ketones and epoxides is a major reaction in organic synthesis, but is usually hard to perform due to the lack of efficient methods. The use of ultrasounds may improve yield because ultrasonic-assisted reactions are often more efficient than traditional methods. Here, we prepared a hybrid chromium(VI)-based magnetic nanocomposite catalyst by co-precipitation. This catalyst was characterized by Fourier transform infrared, solid-state ultraviolet–visible, elemental analysis, X-ray fluorescence, scanning electron microscopy, X-ray diffraction and vibrating sample magnetometer analyses. The catalytic activity was tested by the oxidation of benzyl alcohol to benzaldehyde, cyclohexanol to cyclohexanone, and epoxidation of cyclohexene, using hydrogen peroxide at room temperature under ultrasonic irradiation. Results show conversions ranging from 27 to 100 % according to gas chromatography–mass spectrometry. This is the first report of using magnetic nanocomposites with ultrasonic irradiation for oxidation reactions.  相似文献   
14.
This work aims to determine the maximum concentration and downwind distance at the earth's surface in two methods Briggs and standard for two conditions are slightly unstable and neutral by using the Gaussian equation at different effective heights and wind seeped at (8.9, 8.5 and 8 m/s) under lateral and vertical dispersion coefficient measurement.  相似文献   
15.
ABSTRACT: An 18-month field experiment was conducted to evaluate the effectiveness of grass filter strips in removing sediment and various nitrogen species from runoff. Runoff was collected from six 3.7 m wide experimental plots with 24.7 m long runoff source areas. Two plots had 8.5 m filters, two plots had 4.3 m filters, and two plots had no filters. Runoff was analyzed for total suspended solids (TSS), total Kjeldahl nitrogen (TKN),. filtered TKN (FTKN), NH4+-N, and NO3-N. The Mann-Kendall nonparametric test for trend (changes in filter effectiveness over time) indicated that there were no trends in the yields and concentrations of TSS, NO3--N, NH4-N, TKN, and FTKN for the 8.5 m filter over time. For the shorter 4.3 m filters, there were significant upward trends in TKN yield and downward trends in TSS, NH4-N, and FTKN concentrations, indicating that trapping efficiency may have started changing with time. The Kruskal-Wallis test indicated that the 8.5 m filters reduced median yields and concentrations of TSS and all N species, but the 4.3 m filters only reduced the median yields and concentrations of TSS, NH4+-N, TKN, and the median concentration of FTKN. The 8.5 and 4.3 m filters reduced contaminate yields and concentrations from 42 to 90 percent and from 20 to 83 percent, respectively.  相似文献   
16.
CO2 is the dominant constituent of non-condensable gases in the steam phase of most geothermal fluids. This paper attempts to present the results of a study conducted to develop prediction modeling of CO2 dispersion in the surrounding atmosphere from a planned 50 MWe geothermal power plant prior to its production. Dispersion models are widely used for predicting future concentrations of environmental emissions on a range of geographic scales. The dispersion type for gases and their average removal rate depends on the meteorological conditions such as wind direction, wind speed, precipitation, atmospheric stability, and surface roughness and topography. Geographic Information System (GIS) capabilities were used for quality visualization of the model outputs and presenting an accurate numerical copy of the study area. The results by the prediction model show that the natural transfer of CO2 will be from the power plant toward east and northeast and CO2 concentration trends after the power plant utilization will be similar to the background conditions with minor changes. This dispersion test was carried out to validate and field test the GIS aided dispersion modeling approach described in the paper and the procedure may be applicable for other studies assessing the emission dispersion of pollutants from a point source.  相似文献   
17.
ABSTRACT: A dynamic, compartmental, simulation model (WETLAND) was developed for the design and evaluation of constructed wetlands to optimize nonpoint source (NPS) pollution control. The model simulates the hydrologic, nitrogen, carbon, dissolved oxygen (DO), bacteria, vegetative, phosphorous, and sediment cycles of a wetland system. Written in Fortran 77, the WETLAND models both free‐water surface (FWS) and subsurface flow (SSF) wetlands, and is designed in a modular manner that gives the user the flexibility to decide which cycles and processes to model. WETLAND differs from many existing wetland models in that the interactions between the different nutrient cycles are modeled, minimizing the number of assumptions concerning wetland processes. It also directly links microbial growth and death to the consumption and transformations of nutrients in the wetland system. The WETLAND model is intended to be utilized with an existing NPS hydro‐logic simulation model, such as ANSWERS or BASINS, but also may be used in situations where measured input data to the wetland are available. The model was calibrated and validated using limited data from a FWS wetland located at Benton, Kentucky. The WETLAND predictions were not statistically different from measured values for of five‐day biochemical oxygen demand (BOD5), suspended sediment, nitrogen, and phosphorous. Effluent DO predictions were not always consistent with measured concentrations. A sensitivity analysis indicated the most significant input parameters to the model were those that directly affected bacterial growth and DO uptake and movement. The model was used to design a hypothetical constructed wetland in a subwatershed of the Nomini Creek watershed, located in Virginia. Two‐year simulations were completed for five separate wetland designs. Predicted percent reductions in BOD5 (4 to 45 percent), total suspended solids (85 to 100 percent), total nitrogen (42 to 56 percent), and total phosphorous (38 to 57 percent) were similar to levels reported by previous research.  相似文献   
18.
The goal of this research was to evaluate the relative effects of root density, freeze/thaw cycling, and soil properties on the erodibility and critical shear stress of streambanks. The erodibility and critical shear stress of rooted bank soils were measured in situ at 25 field sites using a submerged jet test device; several soil, vegetation, and stream chemistry characteristics shown to influence soil erosion were also assessed. Multiple linear regression analysis was conducted to determine those factors that most influenced streambank erodibility and the relative impact of riparian vegetation. Study results indicated that soil erosion is a complex phenomenon that depends primarily on soil bulk density. Freeze/thaw cycling, soil antecedent moisture content, the density of roots with diameters of 2 to 20 mm, soil texture, and the interaction of soil pore water and stream water had a significant impact on soil erodibility and critical shear stress, depending on soil type. Riparian vegetation had multiple significant effects on soil erodibility. In addition to reducing soil erodibility through root reinforcement, the streamside vegetation affected soil moisture and altered the local microclimate, which in turn affected freeze/thaw cycling (FTC). This study represents the first in situ testing of the erodibility of vegetated streambanks and provides a quantitative analysis on the effects of vegetation on streambank erosion, relative to other soil physical and chemical parameters.  相似文献   
19.
The ground and municipal water supply samples of Karachi city were analyzed for their fluoride contents. The fluoride contents in water samples collected from the subsurface and river sources were found below the WHO recommended value for the general health of the people. However, in some industrial areas the groundwater sample showed higher level of fluoride concentration. Continuous monitoring of water resources and cautious fluoridation is suggested to maintain proper status of fluoride concentration in the drinking water.  相似文献   
20.
Fecal deposits by grazing animals on pasturelands have the potential to leach nutrients to runoff during rainfall events. Unlike croplands, grazing systems such as pasturelands or rangelands have little opportunity to ameliorate nutrient runoff through in-field or edge-of-field management practices. Thus, we investigated the amounts and concentrations of nutrients in overland flow from simulated grazing lands. Two grazing management scenarios were simulated: continuous grazing represented by two sparsely vegetated (SV) plots and rotational grazing represented by two densely vegetated (DV) plots. In addition, there were two control plots. The plots were treated with standard cowpats and rainfall was simulated until overland flow at the edge of the plots reached steady-state. Higher runoff was observed from DV plots (9.97 mm) than SV plots (7.05 mm), but the average total suspended solids concentration in runoff from SV plots was approximately 17 times the concentration observed in runoff from the DV plots. The average total phosphorus (TP) concentrations were highest in plots simulating continuous grazing (5.91 mg L(-1)). In both DV and SV plots at least 83% of the TP was found to be in the dissolved form. The average total Kjeldhal nitrogen (TKN) and total nitrogen concentrations observed in runoff samples from SV plots were 1.25 and 1.46 mg L(-1), respectively. Organic nitrogen comprised 95% of the TKN observed in runoff samples from SV plots. The SV plots have relatively higher loads for those nutrients in the particle associated form compared to DV plots, whereas DV plots had higher loads for those nutrients in the dissolved form. Grazing lands without any additional manure applications were found to release nutrients in high levels and vegetation did not show any effect on removing dissolved nutrients from runoff. These results are useful to inform selection of appropriate management practices to reduce nutrient transport to surface waters in watersheds dominated by grazed lands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号