首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
废物处理   1篇
环保管理   25篇
综合类   1篇
基础理论   1篇
污染及防治   3篇
评价与监测   3篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2006年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
21.
Fecal deposits by grazing animals on pasturelands have the potential to leach nutrients to runoff during rainfall events. Unlike croplands, grazing systems such as pasturelands or rangelands have little opportunity to ameliorate nutrient runoff through in-field or edge-of-field management practices. Thus, we investigated the amounts and concentrations of nutrients in overland flow from simulated grazing lands. Two grazing management scenarios were simulated: continuous grazing represented by two sparsely vegetated (SV) plots and rotational grazing represented by two densely vegetated (DV) plots. In addition, there were two control plots. The plots were treated with standard cowpats and rainfall was simulated until overland flow at the edge of the plots reached steady-state. Higher runoff was observed from DV plots (9.97 mm) than SV plots (7.05 mm), but the average total suspended solids concentration in runoff from SV plots was approximately 17 times the concentration observed in runoff from the DV plots. The average total phosphorus (TP) concentrations were highest in plots simulating continuous grazing (5.91 mg L(-1)). In both DV and SV plots at least 83% of the TP was found to be in the dissolved form. The average total Kjeldhal nitrogen (TKN) and total nitrogen concentrations observed in runoff samples from SV plots were 1.25 and 1.46 mg L(-1), respectively. Organic nitrogen comprised 95% of the TKN observed in runoff samples from SV plots. The SV plots have relatively higher loads for those nutrients in the particle associated form compared to DV plots, whereas DV plots had higher loads for those nutrients in the dissolved form. Grazing lands without any additional manure applications were found to release nutrients in high levels and vegetation did not show any effect on removing dissolved nutrients from runoff. These results are useful to inform selection of appropriate management practices to reduce nutrient transport to surface waters in watersheds dominated by grazed lands.  相似文献   
22.
ABSTRACT: One-dimensional and two-dimensional modeling approaches were compared for their abilities in predicting overland runoff and sediment transport. Both 1-D and 2-D models were developed to test the hypothesis that the 2-D modeling approach could improve the model predictions over the 1-P approach, based on the same mathematical representations of physical processes for runoff and sediment transport. The models developed in this study were applied to overland areas with cross slopes. A hypothetical case and an experimental study reported by Storm (1991) were used. Based on the simulation results from the selected hypothetical case and experimental study, the 2-D model provided better representation of spatial distribution of flow depths and sediment concentrations than the 1-D model. However, no significant differences in predictions of total runoff volume and sediment yield at the outlet area were found between the 1-D and 2-D models.  相似文献   
23.
ABSTRACT: A field monitoring study of a riparian forest buffer zone was conducted to determine the impact of the riparian ecosystem on reducing the concentration of agricultural nonpoint source pollutants. Groundwater samples were collected from 20 sampling locations between May 1993 and December 1994, and analyzed for NO3-N, PO4, and NH4-N. Statistical analyses such as Friedman's test, cluster analysis, cross correlation analysis and Duncan's test were performed for the nutrient data. The study showed that the ripanan buffer zone was effective in reducing nitrate concentrations originating from upland agricultural fields. Instream nitrate concentrations were 48 percent less than those measured in the agricultural field. Reductions in concentrations in sampling locations at the wetland edge ranged from 16 to 70 percent. The mean nitrate concentrations in forested hill slope were 45 percent less than concentrations in a well located in an upland agricultural field. Meanwhile, the concentrations of phosphate and ammonia did not follow any specific spatial trend and were generally higher during the summer season for most sampling locations.  相似文献   
24.
ABSTRACT: Four peak runoff rate models were tested with 183 gage years of record to determine the model most applicable to small watersheds of mild topography in east-central Illinois. The Cypress Creek, Rational, Chow, and SCS peak runoff models were evaluated for their performance. Statistical analyses indicated the Soil Conservation Service model was most appropriate for the watersheds tested.  相似文献   
25.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   
26.
ABSTRACT: The Hydrologic Simulation Program‐Fortran (HSPF) was calibrated and used to assess the future effects of various land development scenarios on water quality in the Polecat Creek watershed in Caroline County, Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed stream flow and water quality data collected at the watershed outlet and the outlets of two sub water sheds. Using the county's Comprehensive Plan, land use scenarios were developed by taking into account the trends and spatial distributions of future development. The simulation results for the various land use scenarios indicate that runoff volume and peak rate increased as urban areas increased. Urbanization also increased sediment loads mainly due to increases in channel erosion. Constituent loads of total Kjeldal nitrogen, orthophosphorus, and total phosphorous for Polecat Creek watershed slightly decreased under future development scenarios. These reductions are due to increases in urban areas that typically contribute smaller quantities of nitrogen and phosphorous, as compared to agricultural areas. However, nitrate loads increased for the future land use scenarios, as compared to the existing land use. The increases in nitrate loads may result from increases in residential land and associated fertilizer use and concurrent decreases in forested land. The procedures used in this paper could assist local, state, and regional policy makers in developing land management strategies that minimize environmental impacts while allowing for future development.  相似文献   
27.
Land applications of manure from confined animal systems and direct deposit by grazing animals are both major sources of nutrients in streams. The objectives of this study were to determine the effects of P-based manure applications on total suspended solids (TSS) and nutrient losses from dairy manures and poultry litter surface applied to pasturelands and to compare the nutrient losses transported to the edge of the field during overland flow events. Two sets of plots were established: one set for the study of in-field release and another set for the study of edge-of-the-field nutrient transport. Release plots were constructed at three pastureland sites (previous poultry litter applications, previous liquid dairy manure application, and no prior manure application) and received four manure treatments (turkey [Meleagris gallopavo] litter, liquid dairy manure, standard cowpies, and none). Pasture plots with a history of previous manure applications released higher concentrations of TSS and higher percentages of total P (TP) in the particulate form. Transport plots were developed on pasture with no prior manure application. The average flow-weighted TP concentrations were highest in runoff samples from the plots treated with cowpies (1.57 mg L(-1)). Reducing excess P in dairy cow diets and surface applying manure to the land using P-based management practices did not increase N concentrations in runoff. This study found that nutrients are most transportable from cowpies; thus a buffer zone between pastureland and streams or other appropriate management practices are necessary to reduce nutrient losses to waterbodies.  相似文献   
28.
The results are presented of a comparison of four different methods of interpolating observed hydrocarbon depths in monitoring wells, as well as a comparison of different methods of selecting sampling points for interpolation. The results provide criteria for selecting one interpolation method over another, under different scenarios. The methods analyzed are: (1) inverse-distance weighting; (2) punctual kriging; (3) minimum surface curvature; and (4) Akima's quintic polynomial.  相似文献   
29.
ABSTRACT: A rainfall simulator was used to study the effectiveness of no-till and fertilizer application method on reducing phosphorus (P) losses from agricultural lands. Simulated rainfall was applied to 12 experimental field plots, each 0.01 ha in size. The plots were divided into no-till and conventional tillage systems. Two fertilizer application methods, subsurface injection and surface application, were investigated for the two tillage systems. Phosphorus fertilizer was applied at a rate of 46 kg/ha, 24 to 48 hours before the start of rain simulation. Water samples were collected from the base of each plot and analyzed for sediment and P content. No-till was found to be very effective in reducing runoff and sediment losses. No-till reduced sediment loss and total runoff volume by 92 and 67 percent, respectively. Subsurface injection of fertilizer, as compared to surface application, reduced PO4 losses by 39 percent for no-till and by 35 percent for conventional tillage. The effect of tillage system on PO4 losses was not significant. Reductions in total-P (PT) losses due to no-till compared to the conventional tillage system were 89 and 91 percent for surface application and subsurface injection methods, respectively. Averaged across all fertilizer treatments, an equivalent of 0.9 and 8.9 percent of the P applied to the plots were lost from the no-till and conventional tillage plots, respectively.  相似文献   
30.
ABSTRACT: Driven by increasing concerns about bacterial pollution from agricultural sources, states such as Virginia have initiated cost sharing programs that encourage the use of animal waste best management practices (BMPs) to control this pollution. Although a few studies have shown that waste management BMPs are effective at the field scale, their effectiveness at the watershed scale and over the long term is unknown. The focus of this research was to evaluate the effectiveness of BMPs in reducing bacterial pollution at the watershed scale and over the long term. To accomplish this goal, a 1,163 ha watershed located in the Piedmont region of Virginia was monitored over a ten‐year period. Fecal coliforms (FC) and fecal streptococci (FS) were measured as indicators of bacterial pollution. A pre‐BMP versus post‐BMP design was adopted. Major BMPs implemented were manure storage facilities, stream fencing, water troughs, and nutrient management. Seasonal Kendall trend analysis revealed a significant decreasing trend during the post‐BMP period for FC concentrations at the watershed outlet, but not at the subwatershed level. Implementation of BMPs also resulted in a significant reduction in the geometric mean of FS concentrations. FC concentrations in streamflow at the watershed outlet exceeded the Virginia primary standard 86 and 74 percent of the time during pre‐BMP and post‐BMP periods, respectively. Corresponding exceedances for the secondary standard were 50 and 41 percent. Violations decreased only slightly during the post‐BMP period. The findings of this study suggest that although BMP implementation can be expected to accomplish some improvement in water quality, BMP implementation alone may not ensure compliance with current water quality standards.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号