全文获取类型
收费全文 | 256篇 |
免费 | 2篇 |
国内免费 | 6篇 |
专业分类
安全科学 | 7篇 |
废物处理 | 8篇 |
环保管理 | 21篇 |
综合类 | 20篇 |
基础理论 | 40篇 |
污染及防治 | 125篇 |
评价与监测 | 23篇 |
社会与环境 | 19篇 |
灾害及防治 | 1篇 |
出版年
2024年 | 1篇 |
2023年 | 9篇 |
2022年 | 16篇 |
2021年 | 12篇 |
2020年 | 6篇 |
2019年 | 6篇 |
2018年 | 9篇 |
2017年 | 8篇 |
2016年 | 17篇 |
2015年 | 7篇 |
2014年 | 10篇 |
2013年 | 23篇 |
2012年 | 22篇 |
2011年 | 18篇 |
2010年 | 10篇 |
2009年 | 19篇 |
2008年 | 12篇 |
2007年 | 18篇 |
2006年 | 16篇 |
2005年 | 10篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2002年 | 1篇 |
2001年 | 1篇 |
1997年 | 2篇 |
1994年 | 2篇 |
1965年 | 1篇 |
排序方式: 共有264条查询结果,搜索用时 15 毫秒
21.
22.
Little is known about seasonal changes in burrowing activity and burrow architecture in subterranean African mole-rats (Bathyergidae, Rodentia). The solitary genus Heliophobius is the least known genus of this family. We examined burrow systems of the silvery mole-rat ( Heliophobius argenteocinereus) in Malawi in two periods of the dry season. Burrow pattern was influenced by the time of the year, becoming more reticulated at the peak of the dry season when soil was dry and hard. Overall digging activity did not cease during the dry season; yet burrowing strategy changed and the soil was deposited in tunnels rather than transported to mounds. The length of burrow systems was correlated with the body mass of the respective occupants. In spite of their solitary habits – and contrary to the prediction of the aridity food-distribution hypothesis – silvery mole-rats are able to occupy poor habitats with low food supply. 相似文献
23.
Hocine Amin Guellil Mohammed Seghir Dogan Eyup Ghouali Samir Kouaissah Noureddine 《Environmental and Ecological Statistics》2020,27(3):527-547
Environmental and Ecological Statistics - Optimizing sustainable renewable energy portfolios is one of the most complicated decision making problems in energy policy planning. This process involves... 相似文献
24.
High metal contents in edible mushrooms growing in severely contaminated industrial areas pose an important toxicological risk. In the presented study, trace element (Pb, Cd, Zn, Cu, Ag, As, Se) contents were determined in caps and stipes of three different edible mushroom species (Boletus edulis Bull. Fr., Xerocomus badius Fr. Gilb., Xerocomus chrysenteron Bull. Quél.). Additionally, information about the chemical fractionation of metals in separate soil horizons and Pb isotopic data from soils and fruiting bodies allowed a more detailed insight on the uptake mechanisms of metals by the studied mushroom species. Total metal and metalloid concentrations in the organic soil horizons reached 36234 mg Pb kg(-1); 11.9 mg Cd kg(-1); 519 mg Zn kg(-1); 488 mg Cu kg(-1); 25.1 mg Ag kg(-1); 120 mg As kg(-1) and 5.88 Se mg kg(-1). In order to evaluate the accumulation capacity of the studied species, bioconcentration factors (BCF) were calculated for separate trace elements. For selected metals (Pb, Cd, Zn, Cu), a modified BCF calculation (using EDTA-extractable concentrations of metals in soil) was proposed. High contents of Pb (up to 165 mg kg(-1)) and Cd (up to 55 mg kg(-1)) exceeded all the regulatory limits in all the studied species. This was also the case for Se (up to 57 mg kg(-1)) in B. edulis. Intensive consumption of this species grown in such polluted areas can therefore pose toxicological risks for human health. A novel finding was that X. badius can act as an Ag accumulating species when grown at polluted sites due to the high concentrations of Ag (up to 190 mg kg(-1)) in caps. Pb isotopic data showed that Pb originating from the recent air pollution control residues is present mainly in the exchangeable/acid-extractable fraction of the organic horizons and is taken up by fruiting bodies; especially in the case of B. edulis, where fast Pb accumulation occurs. Due to the high species-dependent variations of metal contents, the studied mushrooms are not suitable as bioindicators of environmental pollution. 相似文献
25.
A majority of ongoing monitoring of persistent organic pollutants (POPs) is currently focused on chemicals emphasized in the Stockholm Convention. Quantitative detection of other substances (especially those with numerous anthropogenic sources such as polyaromatic hydrocarbons (PAHs)) is, however, also needed since their concentrations are usually several orders of magnitude higher. A goal of this study was to determine how various groups of compounds contribute to total human health risks at the variety of sampling sites in the region of Western Balkan. Distribution of the risks between the gas and particulate phases was also addressed. Results showed that inhalation exposure to organochlorine pesticides (OCPs) does not represent a significant risk to humans, while polychlorinated biphenyls (PCBs) re-volatilized to the atmosphere from contaminated soils and buildings can pose a problem. PCB evaporation from primary sources (currently used PCB-filled transformers or non-adequate storage facilities) generally resulted in much higher atmospheric concentrations than evaporation from the secondary sources (soils at the sites of war destructions). A majority of the human health risks at the urban sites were associated with PAHs. Between 83 and 94% of the cumulative risk at such sites was assigned to chemicals sorbed to particles, and out of it, PAHs were responsible for 99%. 相似文献
26.
Andráš Peter Dadová Jana Romančík Roman Borošová Daniela Midula Pavol Dirner Vojtech 《Environmental geochemistry and health》2021,43(9):3675-3681
Environmental Geochemistry and Health - The abandoned Malachov deposit belongs among the most important historic Hg deposits in the world. The soil, groundwater, surface water, plants, and animals... 相似文献
27.
Samson G. Mengistu Heather E. Golden Charles R. Lane Jay R. Christensen Michael L. Wine Ellen D’Amico Amy Prues Scott G. Leibowitz Jana E. Compton Marc H. Weber Ryan A. Hill 《Journal of the American Water Resources Association》2023,59(5):1162-1179
Eutrophication, harmful algal blooms, and human health impacts are critical environmental challenges resulting from excess nitrogen and phosphorus in surface waters. Yet we have limited information regarding how wetland characteristics mediate water quality across watershed scales. We developed a large, novel set of spatial variables characterizing hydrological flowpaths from wetlands to streams, that is, “wetland hydrological transport variables,” to explore how wetlands statistically explain the variability in total nitrogen (TN) and total phosphorus (TP) concentrations across the Upper Mississippi River Basin (UMRB) in the United States. We found that wetland flowpath variables improved landscape-to-aquatic nutrient multilinear regression models (from R2 = 0.89 to 0.91 for TN; R2 = 0.53 to 0.84 for TP) and provided insights into potential processes governing how wetlands influence watershed-scale TN and TP concentrations. Specifically, flowpath variables describing flow-attenuating environments, for example, subsurface transport compared to overland flowpaths, were related to lower TN and TP concentrations. Frequent hydrological connections from wetlands to streams were also linked to low TP concentrations, which likely suggests a nutrient source limitation in some areas of the UMRB. Consideration of wetland flowpaths could inform management and conservation activities designed to reduce nutrient export to downstream waters. 相似文献
28.
Cruceru I Iancu V Petre J Badea IA Vladescu L 《Environmental monitoring and assessment》2012,184(5):2783-2795
A simple, sensitive and reliable HPLC-FLD method for the routine determination of 4-nonylphenol, 4-NP and 4-tert-octylphenol, 4-t-OP content in water samples was developed. The method consists in a liquid–liquid extraction of the target analytes with dichloromethane at pH 3.0–3.5 followed by the HPLC-FLD analysis of the organic extract using a Zorbax Eclipse XDB C8 column, isocratic elution with a mixed solvent acetonitrile/water 65:35, at a flow rate of 1.0 mL/min and applying a column temperature of 40°C. The method was validated and then applied with good results for the determination of 4-NP and 4-t-OP in Ialomi?a River water samples collected each month during 2006. The concentration levels of 4-NP and 4-t-OP vary between 0.08–0.17 μg/L with higher values of 0.24–0.37 μg/L in the summer months for 4-NP, and frequently <0.05 μg/L but also between 0.06–0.09 μg/L with higher values of 0.12–0.16 μg/L in July and August for 4-t-OP and were strongly influenced by sesonial and anthropic factors. The method was also applied on samples collected over 2 years 2007 and 2008 from urban wastewaters discharged into sewage or directly into the rivers by economic agents located in 30 Romanian towns. Good results were obtained when the method was used for analysis of effluents discharged into surface waters by 16 municipal wastewater treatment plants, during the year 2008. 相似文献
29.
Holoubek I Klánová J Jarkovský J Kubík V Helesic J 《Journal of environmental monitoring : JEM》2007,9(6):564-571
A multimedia sampling of ambient air, wet deposition, surface water, sediment, soil and biota has been performed at Kosetice background observatory in the southern Czech Republic since 1988. An integrated monitoring approach was applied to assess the current state, anthropogenic impacts, and possible future changes of terrestrial and freshwater environments. Average PCB concentrations in the individual matrices calculated from ten years of sampling on multiple sites varied between 2 ng g(-1) in sediment and 7 ng g(-1) in soil or moss. DDT concentrations were lower in moss and needles (2 ng g(-1) and 4 ng g(-1), respectively) than in sediment (11 ng g(-1)) and soil (20 ng g(-1)), while the HCH level was higher in moss and needles (5 ng g(-1) and 6 ng g(-1), respectively) than in soil or sediment (1 ng g(-1) and 2 ng g(-1), respectively). The highest average level of PAHs was found in soil (600 ng g(-1)), while it was lower in needles (230 ng g(-1)), moss (210 ng g(-1)) or sediment (210 ng g(-1)). Time related trends of concentration levels of persistent organic pollutants in all matrices were investigated. Moss and needle trend patterns resembled those of the ambient air, showing a slight concentration decrease of all compounds, except for hexachlorobenzene. The soil, water and sediment concentrations showed a similar decrease of PAHs, PCBs, and HCHs, but there was no clear trend for DDTs and HCB. 相似文献
30.
Hailong Li Jana P. Jakobsen Jacob Stang 《International Journal of Greenhouse Gas Control》2011,5(3):549-554
In order to evaluate the risk of hydrate formation in CO2 transport one has to be able to predict the water content in the fluid phase in equilibrium with the CO2-hydrate. A literature review has identified some knowledge gaps, for example, there are no results available at temperatures lower than 243.15 K (?30 °C); and none of the models found in literature predicts the water content with high accuracy. A model based on equality of water fugacity in fluid and hydrate phase is presented here and used for the predictions of water content in equilibrium with hydrates. Although this model gives better accuracy in the overall temperature and pressure ranges of measurements than the models found in the literature, it is not accurate enough to satisfy the requirements of CO2 transport. The simulation results also show that it is possible to form hydrate at low water content, such as xw = 50 vppm, if temperature is low enough. In order to verify the results and improve the model accuracy further, more experimental data in a larger temperature and pressure region are required. 相似文献