首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   1篇
  国内免费   6篇
安全科学   3篇
废物处理   34篇
环保管理   25篇
综合类   15篇
基础理论   28篇
污染及防治   37篇
评价与监测   42篇
社会与环境   6篇
灾害及防治   2篇
  2023年   1篇
  2022年   9篇
  2021年   9篇
  2020年   2篇
  2019年   1篇
  2018年   8篇
  2017年   4篇
  2016年   9篇
  2015年   5篇
  2014年   20篇
  2013年   24篇
  2012年   15篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   7篇
  2007年   3篇
  2006年   8篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  2000年   2篇
  1999年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有192条查询结果,搜索用时 62 毫秒
61.
The durability of biocomposites utilized for building components has been a subject of recent concern and questioning. To address these concerns, the long-term effects of weathering on biocomposites used as building components were evaluated using an accelerated weatherometer. The biocomposite samples were processed by sheet molding compounding (SMC) panel processing and/or compression molding. The accelerated weatherometer served to expose the samples to ultraviolet radiation (UV), condensation, and water spray at levels pertinent to actual conditions: 48 cycles of UV (340 nm) treatment at 60 °C for 2.5 h was followed by water spray for 0.5 h, and then condensation at 45 °C for 24 h. Twelve cycles were repeated in each test, and the total duration for the complete test was 2016 h. Measurements for color, surface roughness test weight change, and dynamical mechanical analysis were taken at regular intervals of time. It was found that the surface roughness increased, as the color changed, and storage modulus decreased with increases in the exposure time of the samples to accelerated weathering conditions, compared to their properties at the beginning of the test.  相似文献   
62.
The extent of accumulation of some heavy metals and glutathione and cysteine levels in the roots and aerial plant parts in two genotypically different varieties of A. esculentus (KS404 and BO2) exposed to mine spoil were investigated. Glutathione (GSH) level in both the varieties on control sites increased from basal level to 155.15 nmol g(-1) dry weight (d.wt.), almost 1.5 fold on 30 day and attained a plateau within 60 day Mine spoil exposure of both the varieties decreased glutathione 1.13 fold (89.2 nmol g(-1) dry weight) during 60 day from its basal level. GSH concentration in shoots of these varieties increased accompanying growth contrary to roots where it finally declined 2 fold. Cysteine content in control plants increased 2 fold (31.6 nmol g(-1) dry weight) on 30 day and finally declined 1.38 fold (22.35 nmol g(-1) dry weight, at 60 day). Both the varieties, when exposed to mine spoil, showed enhanced cysteine content almost 2 fold during 30 day (50.95 nmol g(-1) dry weight) but failed to increase further Forshoots in both the varieties challenged with mine spoil, cysteine maxima reached late (15.2 nmol g(-1) dry weight, at 40 day) relative to control but the levels declined subsequently (11.85 nmol g(-l) dry weight). Contrary to GSH, cysteine content in roots of both the varieties responded positively to mine spoil as apparent from the 2.23 fold increase during 30 d than basal level although it lowered to a level of 12.85 nmol g(-1) dry weight finally at 60 day. Both the varieties accumulated almost maximum level of selected cations (Fe > Mn> Zn> Cu > Ni) during 30 day, but BO2 variety was significantly superior in this regard. Invariably high accumulation of such cations in roots over shoots indicated accumulation, retention or restricted translocation from root to shoot. The metal share of the edible part was just 6% of the plant load. Thus, present work reflects a genotypic differences in metal accumulation and that affected the major non-enzymatic traits or synthesis of sulthydryl compounds as well. The present results also indicate that metal tolerance is in part associated with anti-oxidant system activity.  相似文献   
63.
Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events, respectively. In situ collocated probes measured soil water content, matric potential, and Eh. Water samples collected from the same locations were analyzed for Br, Cl, NO, SO, NH, Fe, and total sulfide. Compared with homogeneous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron- and sulfate-reducing bacteria showed 1 to 2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface, the presence of which likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. These findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation or to slow the rate of transport of contaminants.  相似文献   
64.
Mandatory or voluntary reductions in ship speed are a common management strategy for reducing deleterious encounters between large ships and large whales. This has produced strong resistance from shipping and marine transportation entities, in part because very few studies have empirically demonstrated whether or to what degree ship speed influences ship-whale encounters. Here we present the results of four years of humpback whale sightings made by observers aboard cruise ships in Alaska, representing 380 cruises and 891 ship-whale encounters. Encounters occurred at distances from 21 m to 1000 m (x = 567 m) with 61 encounters (7%) occurring between 200 m and 100 m, and 19 encounters (2%) within 100 m. Encounters were spatially aggregated and highly variable across all ship speeds. Nevertheless a Bayesian change-point model found that the relationship between whale distance and ship speed changed at 11.8 knots (6.1 m/s) with whales encountering ships, on average, 114 m closer when ship speeds were above 11.8 knots. Binning encounter distances by 1-knot speed increments revealed a clear decrease in encounter distance with increasing ship speed over the range of 7-17 knots (3.6-8.7 m/s). Our results are the first to demonstrate that speed influences the encounter distance between large ships and large whales. Assuming that the closer ships come to whales the more likely they are to be struck, our results suggest that reduced ship speed may be an effective management action in reducing the probability of a collision.  相似文献   
65.
The present work aims to evaluate Brown 3 REL degrading potential of developed microbial consortium GG-BL using two microbial cultures, Galactomyces geotrichum MTCC 1360 (GG) and Brevibacillus laterosporus MTCC 2298 (BL). Microbial consortium GG-BL showed 100% decolorization of a dye Brown 3 REL, while individually G. geotrichum MTCC 1360 and B. laterosporus MTCC 2298 showed 26% and 86% decolorization under aerobic condition (shaking) respectively. Measurements of biochemical oxygen demand (BOD) (76%) and chemical oxygen demand (COD) (68%) were done after decolorization by consortium GG-BL. No induction in activities of oxidoreductive enzymes found in G. geotrichum while B. laterosporus showed induction of veratryl alcohol oxidase, Nicotineamide adenine dinucleotide-dichlorophenol indophenol (NADH-DCIP) reductase and riboflavin reductase indicating their role in dye metabolism. Consortium GG-BL showed induction in the activities of laccase, veratryl alcohol oxidase, tyrosinase, NADH-DCIP reductase and riboflavin reductase. Two different sets of induced enzymes from G. geotrichum and B. laterosporus work together in consortium GG-BL resulting in faster degradation of dye. The degradation of Brown 3 REL was analyzed using high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FT-IR) and gas chromatography mass spectroscopy (GC-MS). Phytotoxicity study revealed that metabolites formed after degradation was significantly less toxic in nature.  相似文献   
66.
Assessment of petroleum hydrocarbon (PHC) in the Chilika Lagoon, India, revealed a significant spatio-temporal variation in surface water (analysis of variance: n?=?120, p?相似文献   
67.
Seeds of two rice cultivars (Oryza sativa) cv. PR-116 and Pant Dhan-12 subjected to heavy metal lead (Pb2+) and mercury (Hg2+) exposure showed an inhibition in germination percentage, shoot and root length, and lower fresh and dry weight after 7 days. Both Pb2+ and Hg2+ inhibited the solubilization process of starch due to reduction in α-amylase activity, which is also evident from greater starch content and reduced soluble carbohydrate content of endosperms of treated seeds of the two cultivars. Mercury was more tolerated by Pant Dhan-12 when grown under in vitro culture medium containing 2% sucrose. The inhibitory effect of Pb2+ on embryo growth was not only abolished but also accelerated by 2% sucrose. The inhibitory effect, however, was not significantly blocked in Hg2+-treated embryos grown in vitro in sucrose containing medium. Embryos did not grow normally in a medium devoid of sucrose in either case. Data indicated that Pb2+ inhibited germination and seedling growth by impairing the solubilization of endosperm starch without markedly affecting the embryo, while Hg2+ inhibited germination and seedling growth by damaging the embryo itself.  相似文献   
68.
Journal of Polymers and the Environment - The present investigation was performed to study the effect of titanium carbide (TiC) nanoparticles and coir fiber as hybrid reinforcements on the...  相似文献   
69.
This laboratory study examined the combined effects of male and female behaviors on the outcome of mating encounters in Octopus bimaculoides. We found that male–male competition for mating opportunities depends on female maturity; the presence of immature females elicited significantly higher levels of aggression between competing males. We conclude that males are able to assess the reproductive status of females. The study also found that immature and mature females resisted male mating attempts to a similar extent but that males that showed more aggression toward male competitors were able to spend more time in contact with females. We suggest that the lack of prominent visual displays in these mating trials indicates the importance of chemical cues in Octopus mating systems, as has been demonstrated for other cephalopods. This study contributes to the growing research on cephalopod mating systems and in particular shows that Octopus mating dynamics may be more behaviorally complex than initially assumed.  相似文献   
70.
In the present study, influence of talc on thermal, mechanical and rheological behavior of PLA is investigated and the structure?Cproperty correlation for the PLA/talc composites is established. Poly(lactic acid)/talc composites are prepared by melt mixing of PLA with talc in twin screw extruder followed by blown film processing. Various characterizations techniques are used to evaluate thermal, morphological, mechanical and rheological behavior of PLA/talc composites and its blown film. DSC analysis showed that degree of crystallinity of PLA/talc composites was higher than that of neat PLA because of nucleating ability of talc. Spherulite morphology of PLA/talc composites showed that talc has increased nucleation density of spherulite having smaller radius than that of neat PLA. Talc is effective in enhancing tensile modulus and storage modulus of PLA due to reinforcing ability of talc particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号