首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1248篇
  免费   12篇
  国内免费   15篇
安全科学   46篇
废物处理   55篇
环保管理   187篇
综合类   236篇
基础理论   248篇
环境理论   2篇
污染及防治   311篇
评价与监测   107篇
社会与环境   78篇
灾害及防治   5篇
  2023年   17篇
  2022年   25篇
  2021年   29篇
  2020年   18篇
  2019年   23篇
  2018年   34篇
  2017年   28篇
  2016年   35篇
  2015年   30篇
  2014年   46篇
  2013年   59篇
  2012年   63篇
  2011年   76篇
  2010年   49篇
  2009年   69篇
  2008年   59篇
  2007年   78篇
  2006年   50篇
  2005年   52篇
  2004年   53篇
  2003年   40篇
  2002年   43篇
  2001年   32篇
  2000年   19篇
  1999年   16篇
  1998年   22篇
  1997年   13篇
  1996年   17篇
  1995年   18篇
  1994年   13篇
  1993年   9篇
  1992年   14篇
  1991年   8篇
  1990年   15篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   10篇
  1985年   9篇
  1984年   11篇
  1983年   9篇
  1982年   8篇
  1981年   3篇
  1979年   3篇
  1974年   3篇
  1973年   2篇
  1972年   4篇
  1969年   2篇
  1968年   3篇
  1965年   2篇
排序方式: 共有1275条查询结果,搜索用时 31 毫秒
961.
The study uses a rather unusual method, dendrochronology, to investigate the growth and survival of Atriplex portulacoides L. and Artemisia maritima L. on salt marshes at two field sites on the Dutch North Sea barrier islands of Terschelling and Ameland. By providing information on longevity of these typical salt-marsh shrubs, dendrochronology offers an indirect way to investigate the influence of management regime – grazing in this case – on marsh quality and areal extent. Diminishment of salt marshes is a continuing concern in the northern Netherlands. The two shrub species studied here, A. portulacoides and A. maritima, are common to salt marshes. With their extensive roots and branches, they facilitate sedimentation and stabilize salt marshes. Using dendrochronology, this study found that annual growth rings could be identified to determine shrub age and growth. In A. portulacoides these rings took the form of a narrow band of terminal parenchyma. In A. maritima they were made up of unlignified marginal parenchyma together with higher vessel density at the beginning of the growing season. Growth rings indicated that intense grazing was clearly detrimental to the survival of A. portulacoides at the Terschelling site. However, grazing facilitated survival of A. maritima at the Ameland site by reducing light and nutrient competition from grasses. No growth trends could be found, however, as the lifespan for both species is short and many other influences on shrub growth could be identified.  相似文献   
962.
River-bed sediments from the Pangani basin, Tanzania, were characterized for elemental compositions, following contamination risks from rapid expansions of human activities in the area. Samples were collected during two individual seasons and analyzed by high-polarizing beam energy dispersive X-ray fluorescence (EDXRF) for eight major and 14 trace elements. Evaluation of enrichment factors (EFs) was used to investigate the elemental flux and assess the contributions of natural and anthropogenic influences. The abundances of the major elements followed the order Si?>?Al?>?Fe?>?Ca?>?K?>?Ti?>?Mn?>?P, similar to that of the upper earth's crust, and were generally from the weathering of the bed-rock. The high concentrations of typical anthropogenic trace-elements (Cr??1, V??1, Ni??1, Cu??1, La??1) coupled with high EFs (>2) in some locations indicated contamination associated with agricultural and industrial activities. Factor analysis extracted five principal components that contributed to 96.0% of the total observed variance. The results indicated that river-bed sediments of the Pangani basin were influenced to a larger extent by lithogenic sources than anthropogenic impacts.  相似文献   
963.
The distinction between amphibole asbestos fibers and non-asbestos amphibole particles has important implications for assessing potential cancer risks associated with exposure to amphibole asbestos or amphibole-containing products. Exposure to amphibole asbestos fibers can pose a cancer risk due to its ability to reside for long periods of time in the deep lung (i.e., biopersistence). In contrast, non-asbestos amphibole particles are usually cleared rapidly from the lung and do not pose similar respiratory risks even at high doses. Most regulatory and public health agencies, as well as scientific bodies, agree that non-asbestos amphiboles possess reduced biological (e.g., carcinogenic) activity. Although non-asbestos amphibole minerals have been excluded historically from Federal regulations, non-asbestos structures may be counted as asbestos fibers on the basis of dimensional criteria specified in analytical protocols. Given the potential to mischaracterize a non-asbestos structure as a “true” asbestos fiber, our objective was to assess whether exposure to non-asbestos amphiboles that may meet the dimensional criteria for counting as a fiber pose a cancer risk similar to amphibole asbestos. We reviewed analytical methods as well as the mineralogical, epidemiological, and toxicological literature for non-asbestos amphiboles. No evidence of demonstrable cancer effects from exposure to non-asbestos amphiboles that may be counted as fibers, under certain assessment protocols, was found. Data gaps (industrial hygiene data for amphibole-exposed cohorts), inconsistencies (analytical laboratory methods/protocols used to count fibers), and sources of potential bias from misclassification of exposure were identified.  相似文献   
964.
There is a vast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a ‘clear’ state with submerged macrophytes or a ‘turbid’ state dominated by phytoplankton. Eutrophication may cause a switch from the clear to the turbid state, if the P loading exceeds a critical value. The ecological processes governing this switch are covered by the ecosystem model PCLake, a dynamic model of nutrient cycling and the biota in shallow lakes. Here we present an extensive analysis of the model, using a three-step procedure. (1) A sensitivity analysis revealed the key parameters for the model output. (2) These parameters were calibrated on the combined data on total phosphorus, chlorophyll-a, macrophytes cover and Secchi depth in over 40 lakes. This was done by a Bayesian procedure, giving a weight to each parameter setting based on its likelihood. (3) These weights were used for an uncertainty analysis, applied to the switchpoints (critical phosphorus loading levels) calculated by the model. The model was most sensitive to changes in water depth, P and N loading, retention time and lake size as external input factors, and to zooplankton growth rate, settling rates and maximum growth rates of phytoplankton and macrophytes as process parameters. The results for the ‘best run’ showed an acceptable agreement between model and data and classified nearly all lakes to which the model was applied correctly as either ‘clear’ (macrophyte-dominated) or ‘turbid’ (phytoplankton-dominated). The critical loading levels for a standard lake showed about a factor two uncertainty due to the variation in the posterior parameter distribution. This study calculates in one coherent analysis uncertainties in critical phosphorus loading, a parameter that is of great importance to water quality managers.  相似文献   
965.
966.
Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management. Furthermore, we identify and analyse response solutions, focusing on meaningful configurations of the individual solutions and how they can be tailored to specific challenges using expert surveys, content analysis techniques and statistical inferences. Our findings show that the challenges for flood-risk management are diverse, but critical challenges predominantly arise from the current governance and institutional settings. The top-three challenges include weak collaboration, conflicting management objectives and low responsiveness to new issues. We identified 114 reported solutions and developed six flood management strategies that are tailored to specific challenges. We conclude that the current technology-centric flood management approach is insufficient given the rapid socioecological changes. This approach therefore should be adapted towards a more balanced management configuration where technical and infrastructural measures are combined with institutional and governance resolutions. Insights from this study contribute to the emerging repertoire of contemporary flood management solutions, especially through their configurations and tailoring to specific challenges.  相似文献   
967.
Additional freshwater sources are required in many parts of the world, including the coastal areas of the Red River Delta (RRD), where the groundwater (GW) is generally brackish. Determining a feasible method for desalinating brackish aquifers would help provide additional freshwater sources. However, substantial desalination of brackish aquifers cannot be achieved under the natural conditions of GW flow and precipitation recharge. Although rainfall recharge to the shallow Holocene aquifer has occurred for hundreds of years, the aquifer still remains brackish since the natural hydraulic conditions do not allow a complete mixing between the fresh recharged water and aquifer salinized water or the discharging of the aquifer salinized water. The planned salt intrusion prevention gates in the Red River, Tra Ly River and Hoa River in the RRD coastal area, combined with increased GW abstraction and associated aquifer recharge with fresh river water, could result in the gradual desalination of the shallow Holocene aquifer. These effects would help improve the area’s resilience to freshwater shortages and sea level rises and would allow for the creation of a long-term sustainable water resource development plan to manage the salinization of water resources caused by sea level rises. Finite element (FE) modeling of GW flow, solute transport via GW flow and dynamic programming (DP) have been used to study the potential desalination of brackish aquifers, the magnitude of GW abstraction quantities and the spatial and temporal aspects of desalination. FE modeling of GW flow coupled with DP was utilized to identify the magnitude of sustainable abstraction quantities and the GW flow field, which is required in salt transport models. Multiple sizes of elements and time steps were used to adapt to the unsteady state of GW flow and hydraulic head variables between the elements in the FE meshes in order to ensure reasonable accuracy of numerical modeling. The GW flow and salt transport modeling and DP allowed determining quasi-steady-state GW abstraction rates and aquifer salinity levels for conditions that did and did not include the shallow Holocene unconfined aquifer recharge from rainfall. The aquifer modeled domain which is supposed to serve the pumping well field is 1.5 km2. The results showed that the Holocene aquifer may provide a stable abstraction rate of 100 m3/day starting in the 6th year (for the worst-case scenario with zero aquifer recharge from rainfall) to 130 m3/day starting in the 3rd year (for the scenario with aquifer recharge equal to 3% of the rainfall levels). During the first years of GW abstraction, the desalination of the brackish upper Holocene aquifer will mainly occur in the area close to the river, and at the 18th year of abstraction, almost the entire area between the river and line of pumping wells would be desalinized. From the 10th year of abstraction, the abstracted water has a total dissolved solids content lower than 0.5 g/l for the worst-case scenario with zero aquifer recharge from rainfall and lower than 0.42 g/l for the scenario with aquifer recharge equal to 3% of the rainfall. The modeling results indicate the simulated process by which abstraction of groundwater adjacent to the Tra Ly River could desalinize the brackish aquifer via freshwater recharge from the river.  相似文献   
968.
The most important function of watersheds in the western U.S. is the capacity to retain soil and water, thereby providing stability in hydrologic head and minimizing stream sediment loads. Long-term soil and water retention varies directly with vegetation cover. Data on ground cover and plant species composition were collected from 129 sites in the Rio Grande drainage of south-central New Mexico. This area was previously assessed by classification of Advanced Very High Resolution Radiometry (AVHRR) imagery. The classification of irreversibly degraded sites failed to identify most of the severely degraded sites based on size of bare patches and 35% of the sites classified as degraded were healthy based on mean bare patch size and vegetation cover. Previous research showed that an index of unvegetated soil (bare patch size and percent of ground without vegetative cover) was the most robust indicator of the soil and water retention function. Although the regression of mean bare patch size on percent bare ground was significant (p < 0.001), percent bare ground accounted for only 11% of the variability in bare patch size. Therefore bare patch size cannot be estimated from data on percent bare ground derived from remote sensing. At sites with less than 25% grass cover, and on sites with more than 15% shrub cover, there were significant relationships between percent bare soil and mean bare patch size (p < 0.05). Several other indicators of ecosystem health were related to mean bare patch size: perennial plant species richness (r = 0.6, p < 0.0001), percent cover of increaser species (r = 0.5, p < 0.0001) and percent cover of forage useable by livestock (r = 0.62, p < 0.0001). There was no relationship between bare patch size and cover of species that are toxic to livestock. In order to assess the ability of western rangeland watersheds to retain soil and water using remote sensing, it will be necessary to detect and estimate sizes of bare patches ranging between at least 0.5 m in diameter to several meters in diameter.  相似文献   
969.
Atmospheric nitrogen dioxide (NO2) and sulfur dioxide (SO2) levels were monitored simultaneously by means of Radiello passive samplers at six sites of Santa Clara city, Cuba, in the cold and the warm seasons in 2010. The dissolved ionic forms of NO2 and SO2 as nitrate and sulfite plus sulfate, respectively, were determined by means of ion chromatography. Analysis of NO2 as nitrite was also performed by UV–Vis spectrophotometry. For NO2, significant t tests show good agreement between the results of IC and UV–Vis methods. The NO2 and SO2 concentrations peaked in the cold season, while their minimum levels were experienced in the warm season. The pollutant levels do not exceed the maximum allowable limit of the Cuban Standard 39:1999, i.e., 40 μg/m3 and 50 μg/m3 for NO2 and SO2, respectively. The lowest pollutant concentrations obtained in the warm season can be attributed to an increase in their removal via precipitation (scavenging) while to the decreased traffic density and industrial emission during the summer holidays (e.g., July and August).  相似文献   
970.
Anthropogenic (aquaculture) changes in environment nutrient concentrations may affect phytoplankton (biomass and taxa composition) in marine coastal waters off the Chilean Patagonia. The effects of adding nitrate (NO3 ?) to natural phytoplankton assemblages were evaluated considering biomass, cell abundance, and taxonomic composition. Microcosm experiments were performed in the spring, summer, and winter in the Comau Fjord located in Subantarctic Patagonia. At the end of the experiments, NO3 ? decreased rapidly and was undetectable in treatments, indicating a strong NO3 ? deficiency associated with an exponential increase in Chl-a concentrations, particulate organic nitrogen, and carbon in these treatments. Moreover, given the depleted nitrate concentrations of the spring and summer experiments, the micro-phytoplankton taxa structure shifted from mixed diatom and dinoflagellate assemblages (Ceratium spp., Dinophysis spp., Coscinodiscus sp., Rhizosolenia pungens) to assemblages dominated by blooms of the classic chain-forming diatoms found in temperate and cold waters such as Chaetoceros spp., Skeletonema spp., and Thalassiosira spp. Thus, nitrogen sources (i.e., nitrate, ammonia) may influence phytoplankton abundance and biomass accumulation dynamics in the northern section of Patagonia. It also emphasizes the importance of diatom taxa in regards to the short-term response of phytoplankton to changing environmental nutrient conditions due to natural (decreasing freshwater stream flow) and anthropogenic (aquaculture) events. This situation may be one of the future scenarios in the Patagonian fjords, thus stressing the needs for active environmental monitoring and impact assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号