首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18404篇
  免费   285篇
  国内免费   327篇
安全科学   627篇
废物处理   807篇
环保管理   2663篇
综合类   3019篇
基础理论   4672篇
环境理论   7篇
污染及防治   4921篇
评价与监测   1084篇
社会与环境   1090篇
灾害及防治   126篇
  2023年   99篇
  2022年   219篇
  2021年   235篇
  2020年   209篇
  2019年   167篇
  2018年   338篇
  2017年   301篇
  2016年   463篇
  2015年   344篇
  2014年   499篇
  2013年   1490篇
  2012年   664篇
  2011年   961篇
  2010年   707篇
  2009年   798篇
  2008年   871篇
  2007年   913篇
  2006年   755篇
  2005年   633篇
  2004年   639篇
  2003年   577篇
  2002年   551篇
  2001年   651篇
  2000年   519篇
  1999年   319篇
  1998年   210篇
  1997年   228篇
  1996年   223篇
  1995年   267篇
  1994年   210篇
  1993年   210篇
  1992年   175篇
  1991年   182篇
  1990年   178篇
  1989年   180篇
  1988年   153篇
  1987年   133篇
  1986年   156篇
  1985年   143篇
  1984年   190篇
  1983年   147篇
  1982年   171篇
  1981年   157篇
  1980年   130篇
  1979年   150篇
  1978年   94篇
  1977年   98篇
  1975年   88篇
  1974年   93篇
  1972年   96篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
341.
Snarr DN  Brown EL 《Disasters》1979,3(3):287-292
To some degree it is unfair to evaluate a post-disaster housing program as to its effectiveness in decreasing vulnerability and preventing future disasters. As Burton states, "With rare exceptions, administrators and techniques have been trained to cope with disaster rather than to prevent it" [reference (2), p.197]. These were certainly not goals articulated by the agency responsible for constructing housing after Fifi. However, the authors feel that failure to evaluate specific projects by persons knowledgeable of the projects functioning, will only forestall the shift which Cuny calls for, "… from disaster response to disaster mitigation and prevention" [reference (4), p.123). In doing this we hope to add some specific case study data to the growing literature on disaster mitigation and prevention. Disaster vulnerability in Honduras is overwhelmingly related to flooding. More crucial than the materials and construction of housing is the issue of siting. If appropriately sited, houses made of bajarique, wood, or concrete block are able to withstand the heavy rains associated with a hurricane. Regarding the siting of the projects, the Honduras Project clearly has one positive and one negative accomplishment in the cases of Santa Rica and Flores, respectively. San Jose is less clear but is certainly a much safer site than those formerly occupied by the residents, in that there is no danger of flooding. The present site was not flooded during Fifi nor did it experience mudslides. However, the future is not so clear regarding the latter. Within the village proper a large amount of vegetation has been added which will tend to stabilise the soil on the steeper slopes. The streets, however, are seriously eroded and probably can not be maintained for vehicle usage, which does not pose a serious problem to the residents as none possess automobiles or trucks. One large gully bisects the village and receives run-off from the adjacent hills. It has been expanding, which would suggest that the slopes above the village could prove problematic in case of a Fifi-sized storm. Flores is located on a very poor site in reference to prevention and mitigation. It is located in a portion of the Sula Valley which is prone to flooding and, as mentioned before, was inundated by over 2m of water during hurricane Fifi. No prevention techniques were possible by NAEA/HEA and the houses were built on earthen mounds barely adequate to keep water out during the rainy season. The nearby dike which could possibly provide protection is non-functional due to poor maintainance. Given a storm of Fifi's magnitude, or possibly smaller, this site will again be flooded. Santa Rica is clearly well sited concerning flooding: it did not experience flooding during Fifi and is not flood prone. However, houses did experience some wall damage due to earthquakes following and associated with the Guatemalan quake of 1976. Due to the size and nature of the latter much "re-adjustment" occurred in the neighbouring fault system; however, damage to the houses was all superficial. We feel the residents were vocal about their concern due to the severity of the Guatemalan disaster and their lack of experience with concrete block houses. That the two sites (particularly Flores and partially San Jose) are vulnerable to future disasters cannot be considered solely the fault of an outside agency without local knowledge and understanding. In the engineering report issued during the construction it was explicitly stated that in Flores, "Future flooding remains a danger," [reference (6), p.49]. The future residents of Flores had gained access to the land from the National Agrarian Institute and were anxious to receive assistance in building homes. In fact, CARE, which had previously given these people tin roofing for houses, was threatening to take it back since the people had not yet started building. NAEA/HEA were responding to people in a rather desperate situation. But, on the other hand, they were responding to people who had been promised (not given) land by an agency of the Honduran national government which would be cognizant of the potential flooding at this site. Likewise, in San Jose, where mudslides and erosion remain a threat, the land was provided by a local government agency, the municipality. Although our goal in this discussion has not been to establish blame, we feel it imperative to mention the sequence of events that resulted in the questionable siting of Flores and San Jose. It is very easy and often accurate to place blame on outsiders who lack sophistication and knowledge about such matters. In this case local input did not result in post-disaster planning that is actually precautionary. This, we feel, illustrates the extreme complexity of cross-cultural aid, especially in the post-disaster period. It also points to the need for precautionary planning with reference to permanent post-disaster reconstruction.  相似文献   
342.
343.
344.
345.
This study quantifies the short-run impacts of reclamation on strip mining costs, coal prices, production, and employment in Appalachia. A process analysis model is developed and used to estimate short-run strip-mined coal supply functions under conditions of alternative reclamation requirements. Then, an econometric model is developed and used to estimate coal demand relations. Our results show that full reclamation has rather minor impacts. In 1972, full reclamation would have increased strip-mined coal production costs an average of $0.35 per ton, reduced strip-mined coal production by 10 million tons, and cost approximately 1600 jobs in Appalachia.  相似文献   
346.
347.
At the district heating plant of Kalmar, Sweden an on-line unit for production of granulated wood ash for nutrient recycling on forest soils is being applied. Currently, the granules are dried by hot air from an oil-fired burner. The objective of this work was to investigate how drying by flue gas affects the hardening of granules, or impacts their chemical composition and properties. Ninety-six granule samples were treated by flue gas from natural gas combustion in a laboratory pilot scale flue gas generator. CO2, CO, O2, C3H8 and NO concentrations were varied during the experiment. Additionally, some samples were treated by flue gas from combustion of sawdust at the heating plant in Kalmar. Drying by flue gases did not affect the chemical composition of granules, but minor effects were seen in their mineralogy. The carbonate content was slightly higher in granules treated with flue gas from natural gas combustion compared to the granules dried by hot air only, when measured by wet chemical methods. Results from XRD analysis imply that the calcite content is higher and the portlandite and arcanite content slightly less in granules treated with flue gas from sawdust combustion compared to the granules dried by hot air only. The results from this investigation showed no negative effects on ash granule composition or physical structure by the use of a flue as a drying medium.  相似文献   
348.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   
349.
a ), and nutrient availability (phosphorus and nitrogen). High variability in these limnological characteristics, particularly among impoundments, obscured potential differences between impoundments and ponds. No significant differences were found in chlorophyll or nutrient concentrations, and in only two cases were there differences in invertebrate production: gastropods were significantly more abundant in impoundments than in ponds in June, and trichopterans were significantly more abundant in impoundments than in ponds in July. For comparisons within impoundments and ponds, there were significant differences in invertebrate abundance between habitats and between wetland types. For example, plecopterans, trichopterans, and gastropods (all taxa combined) were consistently more abundant in shallow–Arctophila impoundments and ponds than in shallow–Carex impoundments and ponds. Thus, ponds and impoundments may differ significantly in invertebrate production, but we lack information on the amount of different habitat types (i.e., center versus emergent vegetation, Carex versus Arctophila) used by these taxa within each water body type. It is a reasonable speculation, based on results of this study, that impoundments and ponds may have similar value as feeding habitat for invertebrate-eating waterbirds. Thus the presence of impoundments may be consistent with waterbird management goals on the Arctic Coastal Plain.  相似文献   
350.
Denitrification Distributions in Four Valley and Ridge Riparian Ecosystems   总被引:2,自引:0,他引:2  
/ Denitrification in riparian ecosystems can reduce the amount ofnitrogen transported from farm fields to streams. In this study, we examinedenitrification in four riparian ecosystems common to the Valley and Ridgephysiographic province in Pennsylvania, USA. The sites exhibit differentvegetation, are underlain by different rock types, and are downgradient offarm fields. Mean site denitrification rates ranging from 0.6 to 1.9 &mgr;gN/kg soil/day were measured using intact core incubation techniques. Thethree riparian sites covered with grass each exhibited greaterdenitrification rates than the wooded site. Denitrification rate wascorrelated with moisture content but not with nitrate-N or organic carboncontents. Denitrification rates were greatest near the soil surface and atpositions nearest the stream. Rates decreased uniformly with distance awayfrom the stream and also with depth in the soil for each site. While patternsof nitrate-N, moisture, and organic carbon content differ among the sites,their combined effects on denitrification support the observed, consistentdenitrification rate pattern.KEY WORDS: Denitrification; Riparian ecosystems  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号