首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   27篇
  国内免费   9篇
安全科学   26篇
废物处理   15篇
环保管理   153篇
综合类   136篇
基础理论   183篇
环境理论   3篇
污染及防治   126篇
评价与监测   52篇
社会与环境   24篇
灾害及防治   7篇
  2023年   11篇
  2022年   8篇
  2021年   20篇
  2020年   28篇
  2019年   26篇
  2018年   28篇
  2017年   31篇
  2016年   34篇
  2015年   39篇
  2014年   23篇
  2013年   52篇
  2012年   39篇
  2011年   62篇
  2010年   36篇
  2009年   26篇
  2008年   36篇
  2007年   35篇
  2006年   41篇
  2005年   24篇
  2004年   17篇
  2003年   24篇
  2002年   19篇
  2001年   7篇
  2000年   6篇
  1999年   11篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1978年   2篇
  1977年   1篇
排序方式: 共有725条查询结果,搜索用时 156 毫秒
41.

Pyrolysis of waste materials to produce biochar is an excellent and suitable alternative supporting a circular bio-based economy. One of the properties attributed to biochar is the capacity for sorbing organic contaminants, which is determined by its composition and physicochemical characteristics. In this study, the capacity of waste-derived biochar to retain volatile fuel organic compounds (benzene, toluene, ethylbenzene and xylene (BTEX) and fuel oxygenates (FO)) from artificially contaminated water was assessed using batch-based sorption experiments. Additionally, the sorption isotherms were established. The results showed significant differences between BTEX and FO sorption on biochar, being the most hydrophobic and non-polar contaminants those showing the highest retention. Furthermore, the sorption process reflected a multilayer behaviour and a relatively high sorption capacity of the biochar materials. Langmuir and Freundlich models were adequate to describe the experimental results and to detect general differences in the sorption behaviour of volatile fuel organic compounds. It was also observed that the feedstock material and biochar pyrolysis conditions had a significant influence in the sorption process. The highest sorption capacity was found in biochars produced at high temperature (>?400 °C) and thus rich in aromatic C, such as eucalyptus and corn cob biochars. Overall, waste-derived biochar offers a viable alternative to be used in the remediation of volatile fuel organic compounds from water due to its high sorption capacity.

  相似文献   
42.

Background, aim, and scope

Lake Ellasjøen, located in the Norwegian high arctic, contains the highest concentrations of polychlorinated biphenyls (PCBs) ever recorded in fish and sediment from high arctic lakes, and concentrations are more than 10 times greater than in nearby Lake Øyangen. These elevated concentrations in Ellasjøen have been previously attributed, in part, to contaminant loadings from seabirds that use Ellasjøen, but not Øyangen, as a resting area. However, other factors, such as food web structure, organism growth rate, weight, lipid content, lake morphology, and nutrient inputs from the seabird guano, also differ between the two systems. The aim of this study is to evaluate the relative influence of these factors as explanatory variables for the higher PCB fish concentrations in Ellasjøen compared with Øyangen, using both a food web model and empirical data.

Methods

The model is based on previously developed models but parameterized for Lakes Ellasjøen and Øyangen using measured data wherever possible. The model was applied to five representative PCB congeners (PCB 105, 118, 138, 153, and 180) using measured sediment and water concentrations as input data and evaluated with previously collected food web data.

Results

Modeled concentrations are within a factor of two of measured concentrations in 60% and 40% of the cases in Lakes Ellasjøen and Øyangen, respectively, and within a factor of 10 in 100% of the cases in both lakes. In many cases, this is comparable to the variability associated with the data as well as the efficacy of the predictions of other food web model applications.

Discussion

We next used the model to quantify the relative importance of five major differences between Ellasjøen and Øyangen by replacing variables representing each of these factors in the Ellasjøen model with those from Øyangen, in separate simulations. The model predicts that the elevated PCB concentrations in Ellasjøen water and sediment account for 49%–58% of differences in modeled fish PCB concentrations between lakes. These elevated sediment and, to a lesser extent, water concentrations in Ellasjøen are due to PCB loadings from seabird guano. However, sediment–water fugacity ratios of PCBs are consistently greater in Ellasjøen compared with Øyangen, which suggests that internal lake processes also contribute to differences in sediment and water concentrations. We hypothesize that the nutrients associated with guano influence sediment–water fugacity ratios of PCBs by increasing the stock of pelagic algae. As both these algae and the guano settle, their organic carbon content is degraded faster than PCBs, which causes an extra magnification step in Ellasjøen before these detrital particles are consumed by benthic organisms, which are in turn consumed by fish. The model predicts that the remaining ~50% of the differences in PCB concentrations observed between the fish of these lakes are due to other subtle differences in their food web structures.

Conclusions

In conclusion, based on the results of a food web model, we found that the most dominant factors influencing the higher PCB fish concentrations in Lake Ellasjøen compared with Øyangen are the higher sediment and water concentrations in Ellasjøen, caused by seabird guano. Together, sediment and water are predicted to account for 49%–58% of differences in fish concentrations between lakes. Although seabird guano provides a source of nutrients to the lake, in addition to contaminants, empirical data and indirect model results suggest that nutrients are not leading to decreased bioaccumulation, in contrast to what has been observed in temperate, pelagic food webs.

Recommendations and perspectives

The results of this study emphasize the importance of considering even small differences in food web structure when comparing bioaccumulation in two lakes; although the food web structures of Ellasjøen and Øyangen differ only slightly, the model predicts that these differences account for most of the remaining ~50% of the differences in PCB fish concentrations between the two lakes. This study further demonstrates the utility of food web models as we were able to predict and tease apart the influence of various factors responsible for the elevated concentrations in the fish from Lake Ellasjøen, which would have been difficult using the field data alone.  相似文献   
43.
This paper describes a modelling approach used to investigate the significance of key factors (vehicle type, compaction type, site design, temporal effects) in influencing the variability in observed nett amenity bin weights produced by household waste recycling centres (HWRCs). This new method can help to quickly identify sites that are producing significantly lighter bins, enabling detailed back-end analyses to be efficiently targeted and best practice in HWRC operation identified. Tested on weigh ticket data from nine HWRCs across West Sussex, UK, the model suggests that compaction technique, vehicle type, month and site design explained 76% of the variability in the observed nett amenity weights. For each factor, a weighting coefficient was calculated to generate a predicted nett weight for each bin transaction and three sites were subsequently identified as having similar characteristics but returned significantly different mean nett bin weights. Waste and site audits were then conducted at the three sites to try and determine the possible sources of the remaining variability. Significant differences were identified in the proportions of contained waste (bagged), wood, and dry recyclables entering the amenity waste stream, particularly at one site where significantly less contaminated waste and dry recyclables were observed.  相似文献   
44.
Jonathan M. H. Green  Gemma R. Cranston  William J. Sutherland  Hannah R. Tranter  Sarah J. Bell  Tim G. Benton  Eva Blixt  Colm Bowe  Sarah Broadley  Andrew Brown  Chris Brown  Neil Burns  David Butler  Hannah Collins  Helen Crowley  Justin DeKoszmovszky  Les G. Firbank  Brett Fulford  Toby A. Gardner  Rosemary S. Hails  Sharla Halvorson  Michael Jack  Ben Kerrison  Lenny S. C. Koh  Steven C. Lang  Emily J. McKenzie  Pablo Monsivais  Timothy O’Riordan  Jeremy Osborn  Stephen Oswald  Emma Price Thomas  David Raffaelli  Belinda Reyers  Jagjit S. Srai  Bernardo B. N. Strassburg  David Webster  Ruth Welters  Gail Whiteman  James Wilsdon  Bhaskar Vira 《Sustainability Science》2017,12(2):319-331
Delivering access to sufficient food, energy and water resources to ensure human wellbeing is a major concern for governments worldwide. However, it is crucial to account for the ‘nexus’ of interactions between these natural resources and the consequent implications for human wellbeing. The private sector has a critical role in driving positive change towards more sustainable nexus management and could reap considerable benefits from collaboration with researchers to devise solutions to some of the foremost sustainability challenges of today. Yet opportunities are missed because the private sector is rarely involved in the formulation of deliverable research priorities. We convened senior research scientists and influential business leaders to collaboratively identify the top forty questions that, if answered, would best help companies understand and manage their food-energy-water-environment nexus dependencies and impacts. Codification of the top order nexus themes highlighted research priorities around development of pragmatic yet credible tools that allow businesses to incorporate nexus interactions into their decision-making; demonstration of the business case for more sustainable nexus management; identification of the most effective levers for behaviour change; and understanding incentives or circumstances that allow individuals and businesses to take a leadership stance. Greater investment in the complex but productive relations between the private sector and research community will create deeper and more meaningful collaboration and cooperation.  相似文献   
45.
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of “Green Chemistry” and “Green Engineering”, “Green Toxicology” aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.  相似文献   
46.
Activated carbon (AC) amendment is an innovative method for the in situ remediation of contaminated soils. A field-scale AC amendment of either 2% powder or granular AC (PAC and GAC) to a PAH contaminated soil was carried out in Norway. The PAH concentration in drainage water from the field plot was measured with a direct solvent extraction and by deploying polyoxymethylene (POM) passive samplers. In addition, POM samplers were dug directly in the AC amended and unamended soil in order to monitor the reduction in free aqueous PAH concentrations in the soil pore water. The total PAH concentration in the drainage water, measured by direct solvent extraction of the water, was reduced by 14% for the PAC amendment and by 59% for GAC, 12 months after amendment. Measurements carried out with POM showed a reduction of 93% for PAC and 56% for GAC. The free aqueous PAH concentration in soil pore water was reduced 93% and 76%, 17 and 28 months after PAC amendment, compared to 84% and 69% for GAC. PAC, in contrast to GAC, was more effective for reducing freely dissolved concentrations than total dissolved ones. This could tentatively be explained by leaching of microscopic AC particles from PAC. Secondary chemical effects of the AC amendment were monitored by considering concentration changes in dissolved organic carbon (DOC) and nutrients. DOC was bound by AC, while the concentrations of nutrients (NO(3), NO(2), NH(4), PO(4), P-total, K, Ca and Mg) were variable and likely affected by external environmental factors.  相似文献   
47.
The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many countries, and the non-regulated haloacetic acids (HAAs) and haloacetonitriles (HANs) were investigated at 6.0≤pH≤8.0, under controlled chlorination conditions. The investigated particles were collected from a hot tub with a drum micro filter. In two series of experiments with either constant initial active or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from the particles was higher than previously reported for body fluid analogue and filling water. The genotoxicity and cytotoxicity estimated from formation of DBPs from the treated particle suspension increased with decreasing pH. Among the quantified DBP groups the HANs were responsible for the majority of the toxicity from the measured DBPs.  相似文献   
48.
In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km2) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ?mm?ha?1?h?1?a?1. With increasing altitudes, R a rises up to maximum 7,547 MJ?mm ha?1?h?1 a?1 at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a?=?1,986 MJ?mm?ha?1?h?1?a?1. The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.  相似文献   
49.
50.
Jobos Bay, located on the southeastern coast of Puerto Rico, contains a variety of habitats including mangroves, seagrass meadows, and coral reefs. The watershed surrounding the bay includes a number of towns, agricultural areas, and the Jobos Bay National Estuarine Research Reserve (NERR). Jobos Bay and the surrounding watershed are part of a Conservation Effects Assessment Project (CEAP), involving the Jobos Bay NERR, the US Department of Agriculture, and the National Oceanic and Atmospheric Administration (NOAA) to assess the benefits of agricultural best management practices (BMPs) on the terrestrial and marine environments. As part of the Jobos Bay CEAP, NOAA collected sediment samples in May 2008 to characterize over 130 organic chemical contaminants. This paper presents the results of the organic contaminant analysis. The organic contaminants detected in the sediments included polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and the pesticide DDT. PAHs at one site in the inner bay near a boat yard were significantly elevated; however, all organic contaminant classes measured were below NOAA sediment quality guidelines that would have indicated that impacts were likely. The results of this work provide an important baseline assessment of the marine environment that will assist in understanding the benefits of implementing BMPs on water quality in Jobos Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号