首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1576篇
  免费   6篇
  国内免费   6篇
安全科学   10篇
废物处理   72篇
环保管理   81篇
综合类   523篇
基础理论   362篇
污染及防治   364篇
评价与监测   98篇
社会与环境   68篇
灾害及防治   10篇
  2017年   14篇
  2016年   20篇
  2014年   21篇
  2013年   69篇
  2012年   22篇
  2011年   45篇
  2010年   44篇
  2009年   48篇
  2008年   67篇
  2007年   51篇
  2006年   47篇
  2005年   46篇
  2004年   41篇
  2003年   37篇
  2002年   48篇
  2001年   59篇
  2000年   54篇
  1999年   34篇
  1998年   20篇
  1997年   30篇
  1996年   28篇
  1995年   30篇
  1994年   28篇
  1993年   26篇
  1992年   19篇
  1991年   36篇
  1990年   50篇
  1989年   23篇
  1988年   27篇
  1987年   20篇
  1985年   21篇
  1984年   21篇
  1983年   16篇
  1982年   30篇
  1979年   18篇
  1978年   13篇
  1977年   15篇
  1976年   13篇
  1974年   17篇
  1972年   17篇
  1971年   12篇
  1969年   11篇
  1968年   12篇
  1967年   23篇
  1966年   19篇
  1965年   13篇
  1964年   12篇
  1962年   13篇
  1958年   14篇
  1957年   12篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
911.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. In this review the state of scientific understanding in relation to global and regional air quality is outlined. The review discusses air quality, in terms of emissions, processing and transport of trace gases and aerosols. New insights into the characterization of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. Trends in anthropogenic emissions both by region and globally are discussed as well as biomass burning emissions. In terms of chemical processing the major air quality elements of ozone, non-methane hydrocarbons, nitrogen oxides and aerosols are covered. A number of topics are presented as a way of integrating the process view into the atmospheric context; these include the atmospheric oxidation efficiency, halogen and HOx chemistry, nighttime chemistry, tropical chemistry, heat waves, megacities, biomass burning and the regional hot spot of the Mediterranean. New findings with respect to the transport of pollutants across the scales are discussed, in particular the move to quantify the impact of long-range transport on regional air quality. Gaps and research questions that remain intractable are identified. The review concludes with a focus of research and policy questions for the coming decade. In particular, the policy challenges for concerted air quality and climate change policy (co-benefit) are discussed.  相似文献   
912.
Scientific findings from the last decades have clearly highlighted the need for a more comprehensive approach to atmospheric change processes. In fact, observation of atmospheric composition variables has been an important activity of atmospheric research that has developed instrumental tools (advanced analytical techniques) and platforms (instrumented passenger aircrafts, ground-based in situ and remote sensing stations, earth observation satellite instruments) providing essential information on the composition of the atmosphere. The variability of the atmospheric system and the extreme complexity of the atmospheric cycles for short-lived gaseous and aerosol species have led to the development of complex models to interpret observations, test our theoretical understanding of atmospheric chemistry and predict future atmospheric composition. The validation of numerical models requires accurate information concerning the variability of atmospheric composition for targeted species via comparison with observations and measurements.In this paper, we provide an overview of recent advances in instrumentation and methodologies for measuring atmospheric composition changes from space, aircraft and the surface as well as recent improvements in laboratory techniques that permitted scientific advance in the field of atmospheric chemistry. Emphasis is given to the most promising and innovative technologies that will become operational in the near future to improve knowledge of atmospheric composition. Our current observation capacity, however, is not satisfactory to understand and predict future atmospheric composition changes, in relation to predicted climate warming. Based on the limitation of the current European observing system, we address the major gaps in a second part of the paper to explain why further developments in current observation strategies are still needed to strengthen and optimise an observing system not only capable of responding to the requirements of atmospheric services but also to newly open scientific questions.  相似文献   
913.
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a mutli-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March–May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each in Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 μg m?3 over industrial/urban locations to as low as 0.065 μg m?3 over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December–February) to pre-monsoon (March–May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with an afternoon low and a nighttime high; (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL). At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May. This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic. An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.  相似文献   
914.
Empirical data on the 137Cs activity concentration in meat of roe deer (Capreolus capreolus) roaming in 3 spruce forest areas and one peat bog area are presented and compared. They cover time series of nearly 20 years after a spike contamination in 1986 originating from Chernobyl. A model is presented which considers three soil compartments to describe the change of the availability of 137Cs with time.  相似文献   
915.
Fences are very common in rural areas, and represent important landscape elements in both tropical and temperate climate regions. In spite of their marked presence and importance, fences have been little studied, principally in Brazil. The present study examined the types of fences, the diversity of species used in their construction, as well as the diversity of their uses in a rural community in the municipality of Caruaru, Pernambuco State, northeastern Brazil. Fifty meters of fence-line in each of 50 rural properties in the community were examined, noting the diameter, height and identity of all vegetation elements used in their composition. Semi-structured interviews were also held with their builders in order to obtain information concerning fence uses. In the total of 2,500 linear meters of fence-line, 4,953 individual plant elements were identified, belonging to 51 different species. A majority of the fence elements were non-living fence posts, although the number of living posts was high. Of the total number of fence elements, 66.7% were native to the caatinga region. The large number of native species used as non-living fence posts indicates an intensive use of the caatinga vegetation and suggests the need to stimulate the use of living fence posts for conservation purposes.  相似文献   
916.
Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).  相似文献   
917.
The Welsh Government is committed to reduce greenhouse gas (GHG) emissions from agricultural systems and combat the effects of future climate change. In this study, the ECOSSE model was applied spatially to estimate GHG and soil organic carbon (SOC) fluxes from three major land uses (grass, arable and forest) in Wales. The aims of the simulations were: (1) to estimate the annual net GHG balance for Wales; (2) to investigate the efficiency of the reduced nitrogen (N) fertilizer goal of the sustainable land management scheme (Glastir), through which the Welsh Government offers financial support to farmers and land managers on GHG flux reduction; and (3) to investigate the effects of future climate change on the emissions of GHG and plant net primary production (NPP). Three climate scenarios were studied: baseline (1961–1990) and low and high emission climate scenarios (2015–2050). Results reveal that grassland and cropland are the major nitrous oxide (N2O) emitters and consequently emit more GHG to the atmosphere than forests. The overall average simulated annual net GHG balance for Wales under baseline climate (1961–1990) is equivalent to 0.2 t CO2e ha?1 y?1 which gives an estimate of total annual net flux for Wales of 0.34 Mt CO2e y?1. Reducing N fertilizer by 20 and 40 % could reduce annual net GHG fluxes by 7 and 25 %, respectively. If the current N fertilizer application rate continues, predicted climate change by the year 2050 would not significantly affect GHG emissions or NPP from soils in Wales.  相似文献   
918.
In this study, palm oil mill effluent (POME) was used as an alternative medium for algal biomass and lipid production. The influence of different concentrations of filtered and centrifuged POME in sea water (1, 5, 10 and 15%) on microalgal cell growth and lipid yield were investigated. Both Nannochloropsis oculata and Tetraselmis suecica had enhanced cell growth and lipid accumulation at 10% POME with maximum specific growth rate (0.21 d–1 and 0.20 d–1) and lipid content (39.1 ± 0.73% and 27.0 ± 0.61%), respectively, after 16 days of flask cultivation. The total Saturated Fatty Acid (SFA) (59.24%, 68.74%); Monounsaturated Fatty Acid (MUFA) (15.14%, 12.26%); and Polyunsaturated Fatty Acid (PUFA) (9.07%, 8.88%) were obtained for N. oculata and T. suecica, respectively, at 10% POME. Algal cultivation with POME media also enhanced the removal of Chemical Oxygen Demand (COD) (93.6–95%), Biological Oxygen Demand (BOD) (96–97%), Total Organic Compound (TOC) (71–75%), Total Nitrogen (TN) (78.8–90.8%) and oil and grease (92–94.9%) from POME.  相似文献   
919.
This study investigates the heavy metal pollution vulnerability of the groundwater in the coastal aquifers of Kalpakkam region in the state of Tamilnadu, India. Integrated-approach includes pollution evaluation indices, principal component analysis (PCA), and correlation matrix (CM) to evaluate the intensity and source of pollution in groundwater. The data have been used for the calculation of heavy metal pollution index (HPI) and degree of contamination (C d). The mean metal levels in groundwater followed a descending order as: Zn?>?Ba?>?Fe?>?Al?>?Se?>?Mn?>?Cu?>?Ni?>?Pb?>?Cr?>?Mo?>?As?>?Cd?>?Sb?>?Be. The concentrations of Fe, Cd, Zn, Se, Ba, Mn, Ni, Pb, and Al in some of the groundwater samples exceed the maximum admissible concentration (MAC). The HPI and C d yield different results despite significant correlations between them. The following elemental associations were obtained from PCA and CM: Fe?CMn?CNi?CCr?CPb?CCd?CZn?CBe?CAl, Cu?CAs, Sb?CAs, Al?CBa and Se?CMo, which could be linked to anthropogenic sources (i.e., processes of tannery and dying industries with some contribution from the landfill leachate and municipal sewage). GIS-based factor score maps suggest that the activities of tannery industries and landfill leachate are pervasive processes in the area. This study has provided the evidence that effluents discharged from the tannery and auxiliary industries and landfill leachate are the main sources of heavy metal pollution in the groundwater. The high metal concentrations observed in the groundwater may have serious public health and potential environmental hazard implications.  相似文献   
920.
The suitability of stormwater harvested from pervious pavement system (PPS) structures for reuse purposes was investigated in conditions where glyphosate-containing herbicides (GCH) are applied as part of PPS maintenance procedure. The experiment was based on the four-layered design previously described as detailed in CIRIA C582. Results indicated that the highest sodium absorption ratio (SAR) of 1.6 recorded in this study, was less than that at which loss of permeability begins to occur as well as deterioration of matrix structure. Furthermore, the maximum electrical conductivity (ECw) of 2990 μS cm?1, recorded for 7200 mg L?1 concentration (GCH) was slightly below the unstable classification range at which salinity problems related to water quality occur such that salts accumulate in the root zone to the extent that crop yields are adversely affected. However, GCH concentration of 720 mg L?1 was within ‘permissible’ range while that of 72 mg L?1 was within ‘excellent’ range. Current study raises some environmental concerns owing to the overall impact that GCH at concentrations above 72 mg L?1 exerts on the net performance of the organic decomposers, heavy metal and hydrocarbon release from the system and thus, should be further investigated. However, effluent from all the test models including those dosed with high GCH concentration of 7200 mg L?1 do not pose any threat in terms of infiltration or deterioration associated with salinity although, there are indications that high dosage of the herbicide could lead to an elevated electrical conductivity of the recycled water.
Graphical abstract Impact of herbicide on irrigation water quality
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号