首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   701篇
  免费   179篇
  国内免费   1篇
安全科学   94篇
废物处理   66篇
环保管理   267篇
综合类   2篇
基础理论   316篇
污染及防治   75篇
评价与监测   5篇
社会与环境   1篇
灾害及防治   55篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   35篇
  2018年   54篇
  2017年   32篇
  2016年   56篇
  2015年   44篇
  2014年   55篇
  2013年   214篇
  2012年   30篇
  2011年   40篇
  2010年   49篇
  2009年   28篇
  2008年   33篇
  2007年   21篇
  2006年   24篇
  2005年   14篇
  2004年   18篇
  2003年   22篇
  2002年   27篇
  2001年   21篇
  2000年   20篇
  1999年   11篇
  1998年   2篇
  1997年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1966年   1篇
排序方式: 共有881条查询结果,搜索用时 15 毫秒
21.
Scandinavia has one secondary lead smelter that recycles lead from approximately 85% of used car batteries in Scandinavia and which has been active since the 1940s. The smelter, situated in Landskrona, has undergone a comprehensive clean up programme during the last decade, during which time production has doubled, while at the same time discharges of dust and lead to the atmosphere have decreased.Top and depth soil samples were taken on a 0.5km×0.5Km grid throughout the city of Landskrona, which covers an area of approximately 15km2. Samples were analysed by ICPAES for a number of elements including Pb, Zn, Cu, Cd, As, Sb and Hg. Road dust samples from selected sites were collected and similarly analysed. Blood samples were taken from 37 volunteer schoolchildren (aged 8–11) from two schools in Landskrona. House dust samples were taken from each child's home. Soil samples were taken from homes which had gardens, public and school play areas. Elevated heavy metal concentrations were found in close proximity to the secondary lead smelter, and this soil enrichment influences the whole of the town, modified to some extent by the prevailing wind. The smelter does not influence the soil lead concentration at distances greater than 3.5km, where the soil reflects the background value for the area.Road dust samples also show decreases in lead concentrations with distance from the smelter. The average level of lead in house dust was considerably lower than that found in Birmingham, UK. Blood lead levels in the child population ranged from 1.5–5.1gdl–1, with a mean of 3.05gdl–1, showing a distinct decrease from those measured in 1978–82. No significant difference in blood lead concentrations with distance of the home from the smelter, nor between attenders at the two schools was revealed in the limited number of children studied.  相似文献   
22.
In this study two sites were selected in order to investigate groundwater contamination and spatial relationships among groundwater quality, topography, geology, landuse and pollution sources. One site is the Asan area, an agricultural district where pollution sources are scattered and which is mainly underlain by granite of Cretaceous age. The other site is the Gurogu area of Seoul city, an industrial district where an industrial complex and residential areas are located and which is mainly underlain by gneiss of Precambrian age. Groundwater samples collected from these districts were analysed for chemical constituents. An attribute value files of chemical constituents of groundwater and the spatial data layers were constructed and pollution properties were investigated to establish out spatial relationships between the groundwater constituents and pollution sources using geographic information systems (GIS).Relatively high contents of Si and HCO3 in the groundwater from the Asan area reflect the effect of water–rock interaction whereas high contents of Cl, NO3 and Ca2+ in the groundwater from the Gurogu area are due to the pollution of various sources. The significant seasonal variation of SiO2, HCO2 and Ca2+ contents, and that of Ca2+ content were observed in the Asan and the Gurogu areas, respectively. Seasonal variation of pollutants such as Cl, NO3 and SO4 2– was not observed in either area. Pollution over the critical level of the Korean drinking water standard has been investigated from 15 sampling sites out of 40 in the Asan area, and 33 sampling sites out of 51 in the Gurogu area. Pollution by NO3 , Cl, Fe2+, Mn2+, SO4 2– and Zn2+ in the groundwater from the industrial district (Gurogu area) and that of NO3 , SO4 2– and Zn2+ in the groundwater from the agricultural district (Asan area) were observed. The principal pollutant in both areas is NO3 . Deep groundwater from the Asan area is not yet contaminated with NO3 except for one site, but most of the shallow groundwater site occurring near the potential point sources is seriously contaminated. From the result of buffering analysis, it seems clear that factories and stock farms are the principal pollution sources in the Asan area. The groundwater from the Gurogu area has already been seriously polluted considering the fact of NO3 contamination of deep groundwater. Chlorine pollution of shallow groundwater in the Gurogu area was also observed. Spatial relationship between pollution level and its source was clarified in this study by using GIS, which will be applicable to the effective management of groundwater quality.  相似文献   
23.
This study characterizes the 1,4‐dioxane biodegradation potential for an in situ methane‐enhanced biostimulation field pilot study conducted at Air Force Plant 44, located south of the Tucson International Airport in Arizona. In this study, the use of methane as the primary substrate in aerobic cometabolic biodegradation of 1,4‐dioxane is evaluated using environmental molecular diagnostic tools. The findings are compared to an adjacent pilot study, wherein methane was generated via enhanced reductive dechlorination and where methane monooxygenase and methane‐oxidizing bacteria were also found to be abundant. This article also presents the use of 13C and 2H isotopic ratio enrichment, a more recent tool, to support the understanding of 1,4‐dioxane biodegradation in situ. This study is the first of its kind, although alkane gas‐enhanced biodegradation of 1,4‐dioxane has been evaluated extensively in microcosm studies and propane‐enhanced biodegradation of 1,4‐dioxane has been previously studied in the field. ©2016 Wiley Periodicals, Inc.  相似文献   
24.
The Muggah Creek estuary in Sydney, Nova Scotia, received liquid and solid wastes from a steel mill and its associated coke ovens for approximately 100 years. This resulted in pollution of soils and sediments with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), heavy metals, and other pollutants, including those in untreated domestic wastewaters. The Canadian federal and Nova Scotia provincial governments organized the Sydney Tar Ponds Agency (STPA) to develop a remediation approach for the Coke Ovens site soils and Sydney Tar Ponds sediments. The STPA developed a remediation approach for the Sydney Tar Ponds sediments, involving solidification/stabilization (S/S) through mixing cement and other materials into the sediments, and then capping them as a waste pile. High‐density polyethylene (HDPE) plastic sheeting vertical barriers are proposed to be used to divert groundwater and surface water from entering into the S/S‐treated sediments and to collect any water and associated pollutants released from the S/S‐treated sediments. The Coke Ovens site soils are proposed to be landfarmed to reduce some of the PAHs and other pollutants and then capped with a layer of soil. This remediation program is estimated to cost on the order of $400 million (CAN). This article presents a review of the significant potential problems with the STPA proposed remediation strategy of the Sydney Tar Ponds sediments and Coke Ovens site soils. © 2006 Wiley Periodicals, Inc.  相似文献   
25.
This study investigates the two‐dimensional transport of nanoscale iron particles (NIP) and lactate‐modified NIP (LMNIP) in homogeneous and heterogeneous porous media under typical pressurized groundwater flow conditions. A two‐dimensional bench‐scale test setup was developed and a series of experiments was conducted simulating homogeneous sand profile and two‐layer profile with two different sands. NIP and LMNIP at a concentration of 4 g/L were prepared in electrolyte simulating groundwater conditions and were injected at the inlet of the test setup under different pressure gradients (0.5. 0.8, 1, and 2 pounds per square inch). During the testing, effluent was collected and its volume and nanoiron concentrations were measured. At the end of the testing, soil cores were obtained at different distances from the inlet and were used to measure nanoiron concentrations and magnetic susceptibility values. Results showed that the transport of NIP and LMNIP was enhanced by increased pressure gradient. LMNIP transport occurred more uniformly as compared to bare NIP. The iron concentrations decreased with distance from the inlet to the outlet and increased from the top to the bottom of the test cell. The data indicate that, as the particles were transported, they underwent aggregation and sedimentation, which resulted in the observed non‐uniform spatial distribution of iron. The NIP and LMNIP transported through the high‐porosity and high‐permeability soil layer in the heterogeneous soil profile, implying that the transport occurred predominantly along the path of least resistance for the flow. Magnetic susceptibility values are found to have good correlation with the iron content in the soil and are helpful to characterize the transport of NIP and LMNIP. Overall, this study shows that the non‐uniform distribution of NIP and LMNIP occurs under two‐dimensional transport conditions and the soil heterogeneities can significantly impact the transport of NIP and LMNIP. The design of field delivery systems should consider such conditions and optimize the pressurized injection systems. © 2011 Wiley Periodicals, Inc.  相似文献   
26.
During the production of thermonuclear fusion weapons at the Y‐12 National Security Complex (Y‐12 NSC) in Oak Ridge, Tennessee, between 1950 and 1963, the regional environment was extensively contaminated by volatile organic compounds (VOCs). Old Salvage Yard (OSY) on the western side of the site has been characterized as the major source of VOCs. In order to analyze the long‐term fate and transport of chlorinated VOC sources, an integrated surface and subsurface flow and transport model was developed for the Y‐12 NSC using the hydrodynamic and transport numerical package MIKE‐SHE. The model was developed considering the recent hydrogeological investigations on preferential flow and transport pathways at the site. The model was calibrated using the recorded groundwater flow and water‐quality data. The modeling simulated migration of the VOC plume for the next 100 years. Considering a range of hydrogeological and transport parameters, uncertainty of the results is discussed. The modeling predicted that tetrachloroethene, trichloroethene, and 1,2‐dichloroethene may exceed human health–related risk levels for the next 10 to 20 years. However, the contamination is unlikely to migrate to surface water under the current hydrogeological conditions and will decay below acceptable risk levels within approximately 20 years. © 2013 Wiley Periodicals, Inc.  相似文献   
27.
This study examines people's immediate responses to earthquakes in Christchurch, New Zealand, and Hitachi, Japan. Data collected from 257 respondents in Christchurch and 332 respondents in Hitachi revealed notable similarities between the two cities in people's emotional reactions, risk perceptions, and immediate protective actions during the events. Respondents' physical, household, and social contexts were quite similar, but Hitachi residents reported somewhat higher levels of emotional reaction and risk perception than did Christchurch residents. Contrary to the recommendations of emergency officials, the most frequent response of residents in both cities was to freeze. Christchurch residents were more likely than Hitachi residents to drop to the ground and take cover, whereas Hitachi residents were more likely than Christchurch residents to evacuate immediately the building in which they were situated. There were relatively small correlations between immediate behavioural responses and demographic characteristics, earthquake experience, and physical, social, or household context.  相似文献   
28.
A disturbing trend among governmental agencies is the remediation of so‐called “nonhazardous” contaminated sediments/soils by deposition in minimum‐design Subtitle D municipal solid waste (MSW) landfills or landfills with equivalent design. This is done despite the fact that, in terms of protection of public health and environmental quality, the designation “nonhazardous” is misleading at best, and the fact that minimum‐design Subtitle D landfills as being allowed will not ensure protection of groundwater quality for as long as the buried wastes remain a threat. Although acknowledged in the regulatory documentation and exposed in the writings of a few in the scientific/engineering community, the environmental and public health issues that will inevitably be faced at minimum‐design Subtitle D landfills are underplayed, and even misrepresented, to the public. Discussion of relevant issues, as well as remarkable omissions, characterized the October 2004 United States Army Corps of Engineers (US ACE)/United States Environmental Protection Agency (US EPA)/Sediment Management Work Group (SMWG) conference,” Addressing Uncertainty and Managing Risk at Contaminated Sediment Sites.” This article addresses many of those neglected issues. © 2005 Wiley Periodicals, Inc.  相似文献   
29.
Gentle remediation options (GRO) are risk management strategies/technologies that result in a net gain (or at least no gross reduction) in soil function as well as risk management. They encompass a number of technologies, including the use of plant (phyto‐), fungi (myco‐), and/or bacteria‐based methods, with or without chemical soil additives or amendments, for reducing contaminant transfer to local receptors by in situ stabilization, or extraction, transformation, or degradation of contaminants. Despite offering strong benefits in terms of risk management, deployment costs, and sustainability for a range of site problems, the application of GRO as practical on‐site remedial solutions is still in its relative infancy, particularly for metal(loid)‐contaminated sites. A key barrier to wider adoption of GRO relates to general uncertainties and lack of stakeholder confidence in (and indeed knowledge of) the feasibility or reliability of GRO as practical risk management solutions. The GREENLAND project has therefore developed a simple and transparent decision support framework for promoting the appropriate use of gentle remediation options and encouraging participation of stakeholders, supplemented by a set of specific design aids for use when GRO appear to be a viable option. The framework is presented as a three phased model or Decision Support Tool (DST), in the form of a Microsoft Excel‐based workbook, designed to inform decision‐making and options appraisal during the selection of remedial approaches for contaminated sites. The DST acts as a simple decision support and stakeholder engagement tool for the application of GRO, providing a context for GRO application (particularly where soft end‐use of remediated land is envisaged), quick reference tables (including an economic cost calculator), and supporting information and technical guidance drawing on practical examples of effective GRO application at trace metal(loid) contaminated sites across Europe. This article introduces the decision support framework. ©2015 Wiley Periodicals, Inc.  相似文献   
30.
Abstract: In January 2001, the U.S. Supreme Court ruled that the U.S. Army Corps of Engineers exceeded its statutory authority by asserting Clean Water Act (CWA) jurisdiction over non‐navigable, isolated, intrastate waters based solely on their use by migratory birds. The Supreme Court’s majority opinion addressed broader issues of CWA jurisdiction by implying that the CWA intended some “connection” to navigability and that isolated waters need a “significant nexus” to navigable waters to be jurisdictional. Subsequent to this decision (SWANCC), there have been many lawsuits challenging CWA jurisdiction, many of which are focused on headwater, intermittent, and ephemeral streams. To inform the legal and policy debate surrounding this issue, we present information on the geographic distribution of headwater streams and intermittent and ephemeral streams throughout the U.S., summarize major findings from the scientific literature in considering hydrological connectivity between headwater streams and downstream waters, and relate the scientific information presented to policy issues surrounding the scope of waters protected under the CWA. Headwater streams comprise approximately 53% (2,900,000 km) of the total stream length in the U.S., excluding Alaska, and intermittent and ephemeral streams comprise approximately 59% (3,200,000 km) of the total stream length and approximately 50% (1,460,000 km) of the headwater stream length in the U.S., excluding Alaska. Hillslopes, headwater streams, and downstream waters are best described as individual elements of integrated hydrological systems. Hydrological connectivity allows for the exchange of mass, momentum, energy, and organisms longitudinally, laterally, vertically, and temporally between headwater streams and downstream waters. Via hydrological connectivity, headwater, intermittent and ephemeral streams cumulatively contribute to the functional integrity of downstream waters; hydrologically and ecologically, they are a part of the tributary system. As this debate continues, scientific input from multiple fields will be important for policymaking at the federal, state, and local levels and to inform water resource management regardless of the level at which those decisions are being made. Strengthening the interface between science, policy, and public participation is critical if we are going to achieve effective water resource management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号