首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
废物处理   4篇
环保管理   8篇
综合类   1篇
基础理论   3篇
污染及防治   10篇
评价与监测   7篇
社会与环境   1篇
  2023年   1篇
  2022年   2篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
排序方式: 共有34条查询结果,搜索用时 109 毫秒
21.
We applied multilayer perceptron (MLP) and radial basis function (RBF) neural networks using data from two water quality monitoring stations at the Karaj Dam in Iran. Input data were calcium ions (Ca2+), magnesium ions (Mg2+), sodium ions (Na+), chloride ions (Cl?), sulfate (), and pH, and the output data were total dissolved solids (TDS). An MLP with one hidden layer containing eight neurons was selected for the upstream water quality station using normalized input data. We developed a second MLP neural network for the downstream station with one hidden layer containing 10 neurons in the hidden layer using normalized input data. Considering applying normalized input data and one hidden layer, the coefficient of determination (R 2) and index of agreement (IA) between the observed and the predicted data for the upstream and downstream monitoring stations using the MLP neural networks were 0.985, 0.84, 0.99, and 0.92, respectively. The RBF neural network with 100 neurons in its hidden layer reached the minimum errors between the observed and the predicted results in upstream and downstream stations. The R 2 between observed and predicted data for upstream and downstream monitoring stations for the RBF was 0.999 and 0.998, respectively. Data normalization improved the performance of the MLP neural networks. Sensitivity analysis indicated that magnesium is the most effective water quality parameter for predicting TDS, and sulfate is the second most effective water quality parameter affecting TDS prediction at the Karaj Dam.  相似文献   
22.
In the present study, the BCR (Community Bureau of Reference) sequential procedure has been applied to determine the zinc partition in sediments taken from a river situated in the Southwest of Romania, in a region subject of intense mining activities. The sampling was performed during three sampling expeditions, organized in the spring, summer, and autumn, 2007. The zinc concentration in different fractions was normalized, its concentration being related to the concentrations of some metals (such as Al or Fe) that are naturally present in sediments. The zinc-contaminated sediments from the investigated area have been evaluated by means of combining the analysis data from the BCR sequential extraction with the normalization to the Al content. The most important zinc collector in the samples taken during the three sampling expeditions is the easily soluble fraction, next being amorphous iron and manganese hydrated oxides fraction, followed by organic matter fraction.  相似文献   
23.
Increased dissolved inorganic carbon (DIC) enhances the mobilization of metals and nutrients in soil solutions. Our objective was to investigate the mobilization of Al, Ca, Fe, and P in forest soils due to fluctuating DIC concentrations. Intact soil cores were taken from the O and B horizons at the Bear Brook Watershed in Maine (BBWM) to conduct soil column transport experiments. Solutions with DIC concentrations (~20–600 ppm) were introduced into the columns. DIC was reversibly sorbed and its migration was retarded by a factor of 1.2 to 2.1 compared to the conservative sodium bromide tracer, corresponding to a log K D?=???0.82 to ?0.07. Elevated DIC significantly enhanced the mobilization of all Al, Fe, Ca, and P. Particulate (>0.4 μm) Al and Fe were mobilized during chemical and flow transitions, such as increasing DIC and dissolved organic carbon (DOC), and resumption of flow after draining the columns. Calcium and P were primarily in dissolved forms. Mechanisms such as ion exchange (Al, Fe, Ca), ligand- and proton-promoted dissolution (Al and Fe), and ligand exchange (P) were the likely chemical mechanisms for the mobilization of these species. One column was packed with dried and sieved B-horizon soil. The effluent from this column had DOC, Al, and Fe concentrations considerably higher than those in the intact columns, suggesting that these species were mobilized from soil’s microporous structure that was otherwise not exposed to the advective flow. Calcium and P concentrations, however, were similar to those in the intact columns, suggesting that these elements were less occluded in soil particles.  相似文献   
24.
Particulate matter (PM), along with other air pollutants, pose serious hazards to human health. The Artificial Neural Network (ANN) is a branch of artificial intelligence that has an ability to make accurate predictions. In this article, the authors describe such methods and how historical data on air quality, moisture, wind velocity, and temperature in Shahr‐e Ray City, located at the southern tip of Tehran, was used to train an ANN to provide accurate predictions of PM concentrations. The availability of such predictions can offer significant assistance to those who are working to reduce air pollution.  相似文献   
25.
26.

The adsorption and photo-Fenton degradation of tetracycline (TC) over Fe-saturated nanoporous montmorillonite was analyzed. The synthesized samples were characterized using XRD, FTIR, SEM, and XRF analysis, and the adsorption and desorption of TC onto these samples, as well as the antimicrobial activity of TC during these processes, were analyzed at different pH. Initially, a set of adsorption/desorption experiments was conducted, and surprisingly, up to 50% of TC adsorbed was released from Mt structure. Moreover, the desorbed TC had strong antibacterial activity. Then, an acid treatment (for the creation of nanoporous layers) and Fe saturation of the montmorillonite were applied to improve its adsorption and photocatalytic degradation properties over TC. Surprisingly, the desorption of TC from modified montmorillonite was still high up to 40% of adsorbed TC. However, simultaneous adsorption and photodegradation of TC were detected and almost no antimicrobial activity was detected after 180 min of visible light irradiation, which could be due to the photo-Fenton degradation of TC on the modified montmorillonite surface. In the porous structures of modified montmorillonite high, ˙OH radicals were created in the photo-Fenton reaction and were measured using the Coumarin technique. The ˙OH radicals help the degradation of TC as proposed in an oxidation process. Surprisingly, more than 90% of antimicrobial activity of the TC decreased under visible light (after 180 min) when desorbed from nanoporous Fe-saturated montmorillonite compared to natural montmorillonite. To the best of our knowledge, this is the first time that such a high TC desorption rate from an adsorbent with the least residual antimicrobial activity is reported which makes nanoporous Fe-saturated montmorillonite a perfect separation substance of TC from the environment.

  相似文献   
27.
Phosphorus (P), aluminum (Al), and iron (Fe) stream chemistry were assessed for high discharge snowmelt events at the Bear Brook Watershed, Maine (BBWM) during December 2001 and February 2002 and compared with results from a January 1995 study of the same streams. The West Bear catchment has been subjected to artificial acidification since 1989. The East Bear catchment is the untreated reference. Total (acid soluble) Al, Fe, and P were positively correlated with discharge during the 2001–2002 events. However, dissolved P concentrations remained low (≤0.1 μmol L-1) during high discharge events as pH decreased in both streams.For example, in 2001, total P concentration increased to 1.7 μmol L-1 during the rising limb of the hydrograph in West Bear, approximately five times the value in East Bear. During the same event, in West Bear and East Bear dissolved Al concentrations increased to 21 and 6.3 μmol L-1, respectively, while total Al concentrations increased to 166 and 30 μmol L-1, respectively. Dissolved Fe concentrations remained ≤0.9 μmol L-1 in both streams during all study events. However, total Fe concentrations in 2001 increased to 239 and 4.1 μmol L-1 for West Bear and East Bear, respectively. Total Al and Fe declined parallel to total P after peaking during all study periods. Nearly all of the base cations were in dissolved form during the three events, indicating that total Al in West and East Bear Brooks is not associated with primary minerals such as feldspars. We conclude that particulate Al, Fe, and P are chemically linked during transport at high discharge in these episodically and chronically acidified streams.  相似文献   
28.
An application is presented of the methodology used bythe Global Environment Facility (GEF) to measureincremental costs. Incremental cost estimates are usedby the GEF to determine its financial contribution toprojects that protect the global environment, such asinvestments in renewable energy. The importance ofadopting a system-wide view in certain types ofprojects (such as investments in grid-connected power)is illustrated using the case of wind power inMorocco. A narrow plant-by-plant comparison wouldneglect the adjustments in the system expansion planthat may be warranted when one type of plant (e.g., acoal fired thermal plant) is replaced by another (e.g.,a wind farm).  相似文献   
29.
Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 μg/m2/year in Cadillac Brook watershed and 10.2 μg/m2/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 μg/m2/year in Cadillac Brook watershed and 0.10 μg/m2/year in Hadlock Brook watershed.  相似文献   
30.
Packed bed laboratory column experiments were performed to simulate the biogeochemical processes resulting from microbially catalyzed oxidation of organic matter. These included aerobic respiration, denitrification, and Mn(IV), Fe(III) and SO(4) reduction processes. The effects of these reactions on the aqueous- and solid-phase geochemistry of the aquifer material were closely examined. The data were used to model the development of alkalinity and pH along the column. To study the independent development of Fe(III)- and SO(4)-reducing environments, two columns were used. One of the columns (column 1) contained small enough concentrations of SO(4) in the influent to render the reduction of this species unimportant to the geochemical processes in the column.The rate of microbially catalyzed reduction of Mn(IV) changed with time as evidenced by the variations in the initial rate of Mn(II) production at the head of the column. The concentration of Mn in both columns was controlled by the solubility of rhodochrosite (MnCO(3(S))).In the column where significant SO(4) reduction took place (column 2), the concentration of dissolved Fe(II) was controlled by the solubility of FeS. In column 1, where SO(4) reduction was not important, maximum dissolved Fe(II) concentrations were controlled by the solubility of siderite (FeCO(3(S))). Comparison of solid-phase and aqueous-phase data suggests that nearly 20% of the produced Fe(II) precipitates as siderite in column 1. The solid-phase analysis also indicates that during the course of experiment, approximately 20% of the total Fe(III) hydroxides and more than 70% of the amorphous Fe(III) hydroxides were reduced by dissimilatory iron reduction.The most important sink for dissolved S(-II) produced by the enzymatic reduction of SO(4) was its direct reaction with solid-phase Fe(III) hydroxides leading initially to the formation of FeS. Compared to this pathway, precipitation as FeS did not constitute an important sink for S(-II) in column 2. In this column, the total reacted S(-II) estimated from the concentration of dissolved sulfur species was in good agreement with the produced Cr(II)-reducible sulfur in the solid phase. Solid-phase analysis of the sulfur species indicated that up to half of the originally produced FeS may have possibly transformed to FeS(2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号