首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
  国内免费   4篇
安全科学   2篇
废物处理   3篇
环保管理   7篇
综合类   12篇
基础理论   9篇
环境理论   1篇
污染及防治   35篇
评价与监测   4篇
社会与环境   4篇
  2023年   2篇
  2022年   5篇
  2021年   5篇
  2020年   1篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2014年   7篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2002年   2篇
  2000年   1篇
  1997年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
31.
In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future.  相似文献   
32.
Rivers are critical links in the carbon and nitrogen cycle in aquatic,terrestrial,and atmospheric environments.Here riverine carbon and nitrogen exports in nine large rivers on the Tibetan Plateau—the"Water Tower of Asia"—were investigated in the monsoon season from 2013 to 2015.Compared with the world average,concentrations of dissolved inorganic carbon(DIC,30.7 mg/L)were high in river basins of the plateau due to extensive topographic relief and intensive water erosion.Low concentrations of dissolved organic carbon(DOC,1.16 mg/L)were likely due to the low temperature and unproductive land vegetation environments.Average concentrations of riverine DIN(0.32 mg/L)and DON(0.35 mg/L)on the Tibetan Plateau were close to the world average.However,despite its predominantly pristine environment,discharge from agricultural activities and urban areas of the plateau has raised riverine N export.In addition,DOC/DON ratio(C/N,~6.5)in rivers of the Tibetan Plateau was much lower than the global average,indicating that dissolved organic carbon in the rivers of this region might be more bioavailable.Therefore,along with global warming and anthropogenic activities,increasing export of bioavailable riverine carbon and nitrogen from rivers of the Tibetan Plateau can be expected in the future,which will possibly influence the regional carbon and nitrogen cycle.  相似文献   
33.
Personal exposures to viable fungi and bacteria were compared with the concentrations being assessed by stationary samplers in home and workplace microenvironments. A random sample of 81 elementary school teachers in eastern Finland performed two 24-hour measurement periods in wintertime. Concentrations and prevalences of viable fungi and bacteria on the collection filters were determined by cultivation method. The geometric mean concentration was 3-12 cfu m(-3) for total viable fungi, 0.6-3.7 cfu m(-3) for Penicillium and mainly under 1 cfu m(-3) for other fungi. The samples with higher fungal concentrations also had higher diversity of fungi than samples with lower concentrations. The total number of fungal genera recovered was 39 for personal, 34 for home and 23 for work samples. The variation in concentration of Penicillium explained even 25-95% of the variations of total fungal concentration in personal exposure, home and workplace environments. There was an association between personal exposure and home concentration of viable fungi and between personal exposure and home and work concentrations of viable bacteria. Personal exposure and home concentrations of fungi were higher in rural areas than in urban areas. Our results also indicate that presence of a certain fungus in a microenvironment does not necessarily mean similar findings in personal exposure samples.  相似文献   
34.
Environmental Science and Pollution Research - Warming of the earth is considered as the major adverse effect of climate change along with other abnormalities such as non-availability of water...  相似文献   
35.

The energy crisis and environmental pollution have recently fostered research on efficient methods such as environmental catalysis to produce biofuel and to clean water. Environmental catalysis refers to green catalysts used to breakdown pollutants or produce chemicals without generating undesirable by-products. For example, catalysts derived from waste or inexpensive materials are promising for the circular economy. Here we review environmental photocatalysis, biocatalysis, and electrocatalysis, with focus on catalyst synthesis, structure, and applications. Common catalysts include biomass-derived materials, metal–organic frameworks, non-noble metals nanoparticles, nanocomposites and enzymes. Structure characterization is done by Brunauer–Emmett–Teller isotherm, thermogravimetry, X-ray diffraction and photoelectron spectroscopy. We found that water pollutants can be degraded with an efficiency ranging from 71.7 to 100%, notably by heterogeneous Fenton catalysis. Photocatalysis produced dihydrogen (H2) with generation rate higher than 100 μmol h−1. Dihydrogen yields ranged from 27 to 88% by methane cracking. Biodiesel production reached 48.6 to 99%.

  相似文献   
36.
Environmental Economics and Policy Studies - This paper characterizes the ivory demand in Japan, formerly, the largest consumer country of ivory, by imports of worked ivory since 1970. During the...  相似文献   
37.
In this study perceived mental stress during occupational work was compared to heart rate variability (HRV) using a traditional questionnaire and a novel wristop heart rate monitor with related software. The aim was to find HRV parameters useful for mental stress detection. We found the highest correlation between perceived mental stress with the differences between the values of triangular interpolation of rythm-to-rythm (RR) interval histogram (TINN) and the root mean square of differences of successive RR intervals (RMSSD) obtained in the morning and during the workday(r = -.73 andr = -.60, respectively). The analysis shows that as the RMSSD and TINN value differences increase from night to morning, the stress decreases.  相似文献   
38.
A decision-support model for determining the feasibility of a planned energy-from-waste (EfW) investment for an integrated waste management and energy supply system is presented. The aim is to present an easy-to-understand, inexpensive and fast-to-use tool to decision-makers for modelling and evaluating different kinds of processes. Special emphasis is put on forming the model and interpretation of the results of the example case. The simple integrated system management (SISMan) model is presented through a practical example of the use of the model. In the example the viability of the described system is studied by comparing five different cases including different waste-derived fuels (WDF), non-segregated municipal solid waste (MSW) being one of the fuel options. The nominal power output of the EfW plant varied in each case according to the WDF classification. The numeric values for two main variables for each WDF type were determined, the WDF price at the gate of the EfW plant and the waste management fee (WMF) according to the 'polluter pays' -principle. Comparison between the five cases was carried out according to two determinants, the WMF related to each case and the recovery rate related to each case. The numeric values for the constants and variables used in the calculations were chosen as realistically as possible using available data related to the issue. In the example of this paper, the mass-incineration solution ('pure' MSW as a fuel) was found to be the most viable solution for the described system according to the calculations. However, the final decision of the decision-makers might differ from this in the real world due to extra 'fuzzy' information that cannot be reliably included in the calculations. This paper shows that certain key values of modelled systems can be calculated using an easy-to-use tool at the very early stages of a larger design process involving municipal and business partners. The use of this kind of tools could significantly decrease the overall design costs of large systems in the long run by cutting out irrational system options at the very beginning of the planning.  相似文献   
39.
Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23 nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450 mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG0 for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09 mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号