首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16947篇
  免费   152篇
  国内免费   145篇
安全科学   343篇
废物处理   692篇
环保管理   2005篇
综合类   3725篇
基础理论   3804篇
环境理论   6篇
污染及防治   4340篇
评价与监测   1211篇
社会与环境   1070篇
灾害及防治   48篇
  2022年   181篇
  2021年   182篇
  2019年   127篇
  2018年   237篇
  2017年   225篇
  2016年   360篇
  2015年   263篇
  2014年   402篇
  2013年   1221篇
  2012年   453篇
  2011年   667篇
  2010年   516篇
  2009年   593篇
  2008年   694篇
  2007年   713篇
  2006年   643篇
  2005年   533篇
  2004年   556篇
  2003年   543篇
  2002年   506篇
  2001年   633篇
  2000年   399篇
  1999年   301篇
  1998年   188篇
  1997年   210篇
  1996年   226篇
  1995年   231篇
  1994年   232篇
  1993年   221篇
  1992年   201篇
  1991年   210篇
  1990年   198篇
  1989年   173篇
  1988年   170篇
  1987年   162篇
  1986年   157篇
  1985年   150篇
  1984年   170篇
  1983年   168篇
  1982年   176篇
  1981年   144篇
  1980年   134篇
  1979年   124篇
  1978年   138篇
  1977年   116篇
  1976年   109篇
  1975年   110篇
  1974年   120篇
  1971年   99篇
  1967年   102篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
851.
The behavior of an amperometric organic-phase biosensor consisting of a gold electrode modified first with a mercaptobenzothiazole self-assembled monolayer, followed by electropolymerization of polyaniline in which acetylcholinesterase as enzyme was immobilized, has been developed and evaluated for organophosphorous pesticide detection. The voltammetric results have shown that the formal potential shifts anodically as the Au/MBT/PANI/AChE/PVAc thick-film biosensor responded to acetylthiocholine substrate addition under anaerobic conditions in selected organic solvent media containing 2% v/v 0.05 M phosphate buffer, 0.1 M KCl (pH 7.2) solution. Detection limits in the order of 0.147 ppb for diazinon and 0.172 ppb for fenthion in acetone-saline phosphate buffer solution, and 0.180 ppb for diazinon and 0.194 ppb for fenthion in ethanol-saline phosphate buffer solution has been achieved.  相似文献   
852.
853.
Particulate matter (PM) less than 2.5 microm in size (PM2.5) source apportionment by chemical mass balance receptor modeling was performed to enhance regional characterization of source impacts in the southeastern United States. Secondary particles, such as NH4HSO4, (NH4)2SO4, NH4NO3, and secondary organic carbon (OC) (SOC), formed by atmospheric photochemical reactions, contribute the majority (>50%) of ambient PM2.5 with strong seasonality. Source apportionment results indicate that motor vehicle and biomass burning are the two main primary sources in the southeast, showing relatively more motor vehicle source impacts rather than biomass burning source impacts in populated urban areas and vice versa in less urbanized areas. Spatial distributions of primary source impacts show that each primary source has distinctively different spatial source impacts. Results also find impacts from shipping activities along the coast. Spatiotemporal correlations indicate that secondary particles are more regionally distributed, as are biomass burning and dust, whereas impacts of other primary sources are more local.  相似文献   
854.
Synthesis of polyhydroxyalkanoates in municipal wastewater treatment.   总被引:1,自引:0,他引:1  
Biologically derived polyesters known as polyhydroxyalkanoates (PHAs) represent a potentially "sustainable" replacement to fossil-fuel-based thermoplastics. However, current commercial practices that produce PHA with pure microbial cultures grown on renewable, but refined, feedstocks (i.e., glucose) under sterile conditions do not represent a sustainable commodity. Here, we report on PHA production with a mixed microbial consortium indigenous to an activated sludge process on carbon present in municipal wastewaters. Reactors operated under anaerobic/aerobic and aerobic-only mode and fed primary solids fermenter liquor maintained a mixed microbial consortium capable of synthesizing PHA at 10 to 25% (w/w), while reducing soluble COD by approximately 62 to 71%. More critically, an aerobic batch reactor seeded from the anaerobic/aerobic reactor and fed fermenter liquor achieved approximately 53% PHA (w/w). Results presented suggest that environmentally benign production of biodegradable polymers is feasible. We further used PHA-rich biomass to produce a natural fiber-reinforced thermoplastic composite that can be used to offset advanced wastewater treatment costs.  相似文献   
855.
856.
The present study investigates the immobilization of Pb(II), Cd(II) and Ni(II) on clays (kaolinite and montmorillonite) in aqueous medium through the process of adsorption under a set of variables (concentration of metal ion, amount of clay, pH, time and temperature of interaction). Increasing pH favours the removal of metal ions till they are precipitated as the insoluble hydroxides. The uptake is rapid with maximum adsorption being observed within 180 min for Pb(II) and Ni(II) and 240 min for Cd(II). A number of available models like the Lagergren pseudo first-order kinetics, second-order kinetics, Elovich equation, liquid film diffusion and intra-particle diffusion are utilized to evaluate the kinetics and the mechanism of the immobilization interactions. Two isotherm equations due to Langmuir and Freundlich showed good fits with the experimental data. Kaolinite and montmorillonite have considerable Langmuir monolayer capacity with respect to Pb(II), Cd(II) and Ni(II), the values being in the range of 6.8-11.5mg/g (kaolinite) and 21.1-31.1mg/g (montmorillonite). The Freundlich adsorption capacity follows a similar order. The thermodynamics of the immobilization process indicates the same to be exothermic with Pb(II) and Ni(II), but endothermic with Cd(II). The interactions with Pb(II) and Ni(II) are accompanied by decrease in entropy and Gibbs energy while the endothermic immobilization of Cd(II) is supported by an increase in entropy and an appreciable decrease in Gibbs energy. The results have established good potentiality for kaolinite and montmorillonite to remove heavy metals like Pb(II), Cd(II) and Ni(II) from aqueous medium through adsorption-mediated immobilization.  相似文献   
857.
In this study, the Tsunami-caused deterioration of soil and groundwater quality in the agricultural fields of coastal Nagapattinam district of Tamilnadu state in India is presented by analyzing their salinity and sodicity parameters. To accomplish this, three sets of soil samples up to a depth of 30cm from the land surface were collected for the first six months of the year 2005 from 28 locations and the ground water samples were monitored from seven existing dug wells and hand pumps covering the study region at intervals of 3 months. The EC and pH values of both the soil and ground water samples were estimated and the spatial and temporal variability mappings of these parameters were performed using the geostatistical analysis module of ArcGIS((R)). It was observed that the spherical semivariogram fitted well with the data set of both EC and pH and the generated kriged maps explained the spatial and temporal variability under different ranges of EC and pH values. Further, the recorded EC and pH data of soil and ground water during pre-Tsunami periods were compared with the collected data and generated variability soil maps of EC and pH of the post-Tsunami period. It was revealed from this analysis that the soil quality six months after the Tsunami was nearing the pre-Tsunami scenario (EC< 1.5dSm(-1); pH<8), whereas the quality of ground water remained highly saline and unfit for irrigation and drinking. These observations were compared with the ground scenarios of the study region and possible causes for such changes and the remedial measures for taking up regular agricultural practices are also discussed.  相似文献   
858.
Bengtsson G  Picado F 《Chemosphere》2008,73(4):526-531
A combination of laboratory scale derived correlations and measurements of grain size distribution, DOC (dissolved organic carbon) concentration, and density of suspended bacteria promises to be useful in estimating Hg(II) sorption in heterogeneous streambeds and groundwater environments. This was found by shaking intact sediment and fractions thereof (<63-2000mum) with solutions of HgCl(2) (1.0-10.0ngml(-1)). The intact sediment was also shaken with the Hg(II) solutions separately in presence of DOC (6.5-90.2mugml(-1)) or brought in contact with suspensions of a strain of groundwater bacteria (2x10(4)-2x10(6)cellsml(-1)). Hg(II) sorption was rather weak and positively correlated with the grain size, and the sorption coefficient (K(d)) varied between about 300 and 600mlg(-1). By using the relative surface areas of the fractions, K(d) for the intact sediment was back calculated with 2% deviation. K(d) was negatively correlated with the concentration of DOC and positively correlated with the number of bacteria. A multiple regression showed that K(d) was significantly more influenced by the number of bacteria than by the grain size. The findings imply that common DOC concentrations in groundwater and streambeds, 5-20mugml(-1), will halve the K(d) obtained from standard sorption assays of Hg(II), and that K(d) will almost double when the cell numbers are doubled at densities that are common in aquifers. The findings suggest that simultaneous measurements of surface areas of sediment particles, DOC concentrations, and bacterial numbers are useful to predict spatial variation of Hg(II) sorption in aquifers and sandy sediments.  相似文献   
859.
A greenhouse pot experiment was conducted to evaluate the effect of sewage sludge (SS), of sugar beet sludge (SBS), or of a combination of both, in the remediation of a highly acidic (pH 3.6) metal-contaminated soil, affected by mining activities. The SS was applied at 100 and 200 Mg ha(-1) (dry weight basis), and the SBS at 7 Mg ha(-1). All pots were sown with Italian ryegrass (Lolium multiflorum Lam.). After 60 d of growth, shoot biomass was quantified and analysed for Cu, Pb and Zn. The pseudo-total and bioavailable contents of Cu, Pb and Zn and the enzymatic activities of beta-glucosidase, acid phosphatase, cellulase, protease and urease were determined in the soil mixtures. Two indirect acute bioassays with leachates from the soil (luminescent inhibition of Vibrio fischeri and Daphnia magna immobilization) were also used. The SS, in particular when in combination with SBS, corrected soil acidity, while increasing the total organic matter content and the cation exchange capacity. The application of SS led to a decrease in the level of effective bioavailable metals (extracted by 0.01 M CaCl(2), pH 5.7, without buffer), but caused an increase in their potential bioavailability (extracted by a solution of 0.5M NH(4)CH(3)COO, 0.5 M CH(3)COOH and 0.01 M EDTA, pH 4.7). Plant biomass increased more than 10 times in the presence of 100 Mg SS ha(-1), and more than five times with the combined use of 100 Mg SS ha(-1) and SBS, but a considerable phytotoxic effect was observed for the application rate of 200 Mg SS ha(-1). Copper, Pb and Zn concentrations in the shoots of L. multiflorum decreased significantly when using 100 Mg SS ha(-1) or SBS. The activities of beta-glucosidase, urease and protease increased with increasing SS applications rates, but cellulase had a reduced activity when using 200 Mg ha(-1)SS. Both amendments were able to suppress soil toxicity to levels that did not affect D. magna, but increased the soil leachate toxicity towards V. fischeri, especially with the application of 200 Mg SS ha(-1). This study showed that for this type of mine soils, and when using SS of similar composition, the maximum SS application rate should be 100 Mg ha(-1), and that liming the SS amended soil with SBS did not contribute to a further improvement in soil quality.  相似文献   
860.
Novel 1D QSAR approach that allows analysis of non-additive effects of molecular fragments on toxicity has been proposed. Twenty-eight nitroaromatic compounds including some well-known explosives have been chosen for this study. The 50% lethal dose concentration for rats (LD50) was used as the estimation of toxicity in vivo to develop 1D QSAR models on the framework of Simplex representation of molecular structure. The results of 1D QSAR analysis show that even the information about the composition of molecules provides the main trends of toxicity changes. The necessity of consideration of substituents' mutual impacts for the development of adequate QSAR models of nitroaromatics' toxicity was demonstrated. Statistic characteristics for all the developed partial least squares QSAR models, except the additive ones are quite satisfactory (R2=0.81-0.92; Q2=0.64-0.83; R2 test=0.84-0.87). A successful performance of such models is due to their non-additivity i.e. possibility of taking into account the mutual influence of substituents in benzene ring which plays the governing role for toxicity change and could be mediated through the different C-H fragments of the ring. The correspondence between observed and predicted by these models toxicity values is good. This allowing combine advantages of such approaches and develop adequate consensus model that can be used as a toxicity virtual screening tool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号