首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22128篇
  免费   261篇
  国内免费   135篇
安全科学   585篇
废物处理   938篇
环保管理   3129篇
综合类   3511篇
基础理论   6241篇
环境理论   11篇
污染及防治   5656篇
评价与监测   1365篇
社会与环境   937篇
灾害及防治   151篇
  2021年   149篇
  2019年   142篇
  2018年   270篇
  2017年   271篇
  2016年   448篇
  2015年   345篇
  2014年   514篇
  2013年   1768篇
  2012年   618篇
  2011年   896篇
  2010年   730篇
  2009年   727篇
  2008年   897篇
  2007年   940篇
  2006年   832篇
  2005年   713篇
  2004年   690篇
  2003年   682篇
  2002年   647篇
  2001年   798篇
  2000年   600篇
  1999年   356篇
  1998年   278篇
  1997年   301篇
  1996年   302篇
  1995年   356篇
  1994年   320篇
  1993年   304篇
  1992年   297篇
  1991年   301篇
  1990年   310篇
  1989年   298篇
  1988年   260篇
  1987年   258篇
  1986年   234篇
  1985年   211篇
  1984年   277篇
  1983年   222篇
  1982年   287篇
  1981年   233篇
  1980年   197篇
  1979年   208篇
  1978年   191篇
  1977年   168篇
  1976年   148篇
  1975年   153篇
  1974年   169篇
  1973年   167篇
  1972年   151篇
  1971年   148篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
831.
城市污水生物处理系统中微生物酶的活性及其分布   总被引:1,自引:0,他引:1  
李茵  罗翠  Chr 《环境污染与防治》2007,29(5):333-335
通过水解模式底物进行分光光度测定的方法,研究了城市污水生物处理系统中微生物酶的活性.选取亮氨酸氨基肽酶、β-葡萄糖苷酶、碱性磷酸酶和脂酶等胞外酶进行分析,结果发现4种胞外酶的平均活性在31.O~88.5 μmol/(L·h),其中76.9%~94.8%的酶活性分布在活性污泥中,说明绝大部分胞外酶是与细胞相连或固定在细胞外多聚絮体基质里.混合水样和出水水样中的DOC几乎相等,而各胞外酶与DOC不存在任何显著的相关关系.增加NO3-浓度可提高亮氨酸氨基肽酶和β-葡萄糖苷酶的活性,但对碱性磷酸酶和脂酶却有明显的抑制作用.  相似文献   
832.
Journal of Material Cycles and Waste Management - Leather production is a technology that boosts the economy because of its versatility and durability. However, the wastes generated throughout the...  相似文献   
833.
Journal of Material Cycles and Waste Management - The daily use of facemask to prevent virus transmission increases the negative effect on the environment because of improper waste disposal. Due to...  相似文献   
834.
Journal of Material Cycles and Waste Management - The use of lignocellulosic fibers as fillers in polymer matrices has aroused the interest of the scientific community and industrial sectors. In...  相似文献   
835.
Journal of Material Cycles and Waste Management - Fused filament fabrication (FFF) based additive manufacturing (AM) process is a widely used and emerging manufacturing process for...  相似文献   
836.
Unprecedented and dramatic transformations are occurring in the Arctic in response to climate change, but academic, public, and political discourse has disproportionately focussed on the most visible and direct aspects of change, including sea ice melt, permafrost thaw, the fate of charismatic megafauna, and the expansion of fisheries. Such narratives disregard the importance of less visible and indirect processes and, in particular, miss the substantive contribution of the shelf seafloor in regulating nutrients and sequestering carbon. Here, we summarise the biogeochemical functioning of the Arctic shelf seafloor before considering how climate change and regional adjustments to human activities may alter its biogeochemical and ecological dynamics, including ecosystem function, carbon burial, or nutrient recycling. We highlight the importance of the Arctic benthic system in mitigating climatic and anthropogenic change and, with a focus on the Barents Sea, offer some observations and our perspectives on future management and policy.  相似文献   
837.
838.
In the long-term, landfills are producing landfill gas (LFG) with low calorific values. Therefore, the utilization of LFG in combined heat and power plants (CHP) is limited to a certain period of time. A feasible method for LFG treatment is microbial CH(4) oxidation. Different materials were tested in actively aerated lab-scale bio-filter systems with a volume of 0.167 m(3). The required oxygen for the microbial CH(4) oxidation was provided through perforated probes, which distributed ambient air into the filter material. Three air input levels were installed along the height of the filter, each of them adjusted to a particular flow rate. During the tests, stable degradation rates of around 28 g/(m(3) h) in a fine-grained compost material were observed at a CH(4) inlet concentration of 30% over a period of 148 days. Compared with passive (not aerated) tests, the CH(4) oxidation rate increased by a factor of 5.5. Therefore, the enhancement of active aeration on the microbial CH(4) oxidation was confirmed. At a O(2)/CH(4) ratio of 2.5, nearly 100% of the CH(4) load was decomposed. By lowering the ratio from 2.5 to 2, the efficiency fell to values from 88% to 92%. By varying the distribution to the three air input levels, the CH(4) oxidation process was spread more evenly over the filter volume.  相似文献   
839.
To determine useful metrics for assessing stream water quality in the Southeastern Coastal Plain, we examined differences among two buffered and three unbuffered streams in an agricultural landscape in southwestern Georgia. Potential indicators included amphibian diversity and abundance, aquatic macroinvertebrate populations, riparian vegetative structure, water quality, and stream physical parameters. Variability among sites and treatments (buffered vs. unbuffered) existed, with sites in the same treatment as most similar, and disturbances from a nearby eroding gully strongly affecting one unbuffered site. Of the invertebrate metrics examined, percentages of clingers, Ephemeroptera-Plecoptera-Trichoptera (EPT), Elmidae (Coleoptera), Crustacea (Decapoda and Amphipoda), and dipterans were found to be possible indicators of stream health for perennial streams within this region. Overall, buffered sites showed higher percentages of sensitive invertebrate groups and showed lower and more stable concentrations of nitrate N, suspended solids, and fecal coliforms (FCs). Percent canopy cover was similar among sites; however, riparian vegetative coverage and percent leaf litter were greatest at buffered sites. No differences in amphibian abundance, presence, and absence within the riparian area were apparent between sites; however, instream larval salamanders were more abundant at buffered streams. In this study, stream buffers appeared to decrease nutrient and sediment loads to adjacent streams, enhancing overall water quality. Selected benthic macroinvertebrate metrics and amphibian abundance also appeared sensitive to agricultural influences. Amphibians show potential as indicator candidates, however further information is needed on their responses and tolerances to disturbances from the microhabitat to landscape levels.  相似文献   
840.
Plant species vary in response to atmospheric CO2 concentration due to differences in physiology, morphology, phenology, and symbiotic relationships. These differences make it very difficult to predict how plant communities will respond to elevated CO2. Such information is critical to furthering our understanding of community and ecosystem responses to global climate change. To determine how a simple plant community might respond to elevated CO2, a model regenerating longleaf pine community composed of five species was exposed to two CO2 regimes (ambient, 365 micromol mol(-1) and elevated, 720 micromol mol(-1)) for 3 yr. Total above- and belowground biomass was 70 and 49% greater, respectively, in CO2-enriched plots. Carbon (C) content followed a response pattern similar to biomass, resulting in a significant increase of 13.8 Mg C ha(-1) under elevated CO2. Responses of individual species, however, varied. Longleaf pine (Pinus palustris Mill.) was primarily responsible for the positive response to CO2 enrichment. Wiregrass (Aristida stricta Michx.), rattlebox (Crotalaria rotundifolia Walt. Ex Gmel.), and butterfly weed (Asclepias tuberosa L.) exhibited negative above- and belowground biomass responses to elevated CO2, while sand post oak (Quercus margaretta Ashe) did not differ significantly between CO2 treatments. As with pine, C content followed patterns similar to biomass. Elevated CO2 resulted in alterations in community structure. Longleaf pine comprised 88% of total biomass in CO2-enriched plots, but only 76% in ambient plots. In contrast, wiregrass, rattlebox, and butterfly weed comprised 19% in ambient CO2 plots, but only 8% under high CO2. Therefore, while longleaf pine may perform well in a high CO2 world, other members of this community may not compete as well, which could alter community function. Effects of elevated CO2 on plant communities are complex, dynamic, and difficult to predict, clearly demonstrating the need for more research in this important area of global change science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号