首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   2篇
  国内免费   1篇
安全科学   4篇
废物处理   8篇
环保管理   38篇
综合类   12篇
基础理论   31篇
环境理论   1篇
污染及防治   39篇
评价与监测   9篇
社会与环境   4篇
灾害及防治   2篇
  2022年   4篇
  2021年   1篇
  2020年   2篇
  2019年   6篇
  2018年   3篇
  2017年   3篇
  2016年   8篇
  2015年   5篇
  2014年   4篇
  2013年   24篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   6篇
  2008年   10篇
  2007年   6篇
  2006年   11篇
  2005年   6篇
  2004年   2篇
  2003年   11篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有148条查询结果,搜索用时 31 毫秒
71.
Spatial patterns in major dissolved solute concentrations were examined to better understand impact of surface coal mining in headwaters on downstream water chemistry. Sixty sites were sampled seasonally from 2012 to 2014 in an eastern Kentucky watershed. Watershed areas (WA) ranged from 1.6 to 400.5 km2 and were mostly forested (58%–95%), but some drained as much as 31% surface mining. Measures of total dissolved solutes and most component ions were positively correlated with mining. Analytes showed strong convergent spatial patterns with high variability in headwaters (<15 km2 WA) that stabilized downstream (WA > 75 km2), indicating hydrologic mixing primarily controls downstream values. Mean headwater solute concentrations were a good predictor of downstream values, with % differences ranging from 0.55% (Na+) to 28.78% (Mg2+). In a mined scenario where all headwaters had impacts, downstream solute concentrations roughly doubled. Alternatively, if mining impacts to headwaters were minimized, downstream solute concentrations better approximated the 300 μS/cm conductivity criterion deemed protective of aquatic life. Temporal variability also had convergent spatial patterns and mined streams were less variable due to unnaturally stable hydrology. The highly conserved nature of dissolved solutes from mining activities and lack of viable treatment options suggest forested, unmined watersheds would provide dilution that would be protective of downstream aquatic life.  相似文献   
72.
Abstract

Inhalation exposure to urban air particles is known to increase morbidity in humans and animals. Our group utilizes the Harvard/U.S. Environmental Protection Agency Ambient Particle Concentrator (HAPC) to generate concentrated aerosols of outdoor air particles for experimental exposures. We have reported increased pathologic responses to inhalation of concentrated urban air particles and identified silicon (as silicate) as an element associated with many of these responses. Using silicate-rich Mt. St. Helen’s volcanic ash (MSHA), we exposed three groups of Sprague-Dawley rats by inhalation for 6 hr to filtered air, MSHA, or MSHA passed though the HAPC. Twenty-four hours following exposure, bronchoalveolar lavage was performed to assess total cell count, differential cell count, protein, lactate dehydrogenase, and n-β[notdef]glucosaminidase levels. Peripheral blood was examined for packed cell volume, total protein, total white cells, and differential cell count. Morphologic studies localized particles in the lung and assessed pulmonary vasculature. No significant differences were observed among any of the groups in any parameter measured including morpho-metric analysis of pulmonary vasoconstriction. Scanning electron microscopy and X-ray analysis identified particles as silicates typical of MSHA throughout the lung. These findings suggest that particles passing through the HAPC have no change in their toxic potential in an exposure setting where particle deposition in the lung has occurred.  相似文献   
73.
The field-experiment campaigns of the Asian Atmospheric Particulate Environment Change Studies (APEX-E1 in December 2000, -E2 in spring 2001, and -E3 in spring 2003) aimed at understanding Asian aerosols. Our sun/sky photometric measurements of atmospheric light have joined these campaigns by using multispectral photometers (CE-318-1 and -2, Cimel Electronique; and POM-100P, Prede) at Noto, Shirahama, and Fukue-jima, Japan. This paper focuses on aerosol retrieval during the APEX-E3 campaign. Aerosol optical thickness, Ångström exponent, single-scattering albedo and the refractive index derived from these ground-based measurements can be classified into three categories of aerosols: (1) an oceanic type of typical background aerosols over Japan, (2) an anthropogenic type, and (3) a soil-dust type. The data from APEX experiments demonstrate that aerosols over Japan exhibit complicated spatial and temporal features involving mixtures of compounds.  相似文献   
74.
Since the Bhopal incident, the public has placed pressure on regulatory agencies to set community exposure limits for the dozens of chemicals that may be released by manufacturing facilities. More or less objective limits can be established for the vast majority of these chemicals through the use of risk assessment. However, each step of the risk assessment process (i.e., hazard identification, dose-response assessment, exposure assessment, and risk characterization) contains a number of pitfalls that scientists need to avoid to ensure that valid limits are established. For example, in the hazard identification step there has been little discrimination among animal carcinogens with respect to mechanism of action or the epidemiology experience. In the dose-response portion, rarely is the range of “plausible” estimated risks presented. Physiologically based pharmacokinetic (PB-PK) models should be used to understand the difference between the tissue doses and the administered dose, as well as the difference in target tissue concentrations of the toxicant between rodents and humans. Biologically-based models like the Moolgavkar-Knudson-Venzon (MKV) should be developed and used, when appropriate. The exposure assessment step can be significantly improved by using more sensitive and specific sampling and analytical methods, more accurate exposure parameters, and computer models that can account for complex environmental factors. Whenever possible, model predictions of exposure and uptake should be validated by biological monitoring of exposed persons (urine, blood, adipose) or by field measurements of plants, soil, fish, air, or water. In each portion of an assessment, the weight of evidence approach should be used to identify the most defensible value. In the risk characterization, the best estimate of the potential risk as well as the highest plausible risk should be presented. Future assessments would be much improved if quantitative uncertainty analyses were conducted. Procedures are currently available for making future assessments. By correcting some of these shortcomings in how health risk assessments have been conducted, scientists and risk managers should be better able to identify scientifically appropriate ambient air standards and emission limits.  相似文献   
75.
Numerous studies have reported a positive association between ambient fine particles and daily mortality, but little is known about the particle properties or environmental factors that may contribute to these effects. This study assessed potential modification of radon on PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm)-associated daily mortality in 108 U.S. cities using a two-stage statistical approach. First, city- and season-specific PM2.5 mortality risks were estimated using over-dispersed Poisson regression models. These PM2.5 effect estimates were then regressed against mean city-level residential radon concentrations to estimate overall PM2.5 effects and potential modification by radon. Radon exposure estimates based on measured short-term basement concentrations and modeled long-term living-area concentrations were both assessed. Exposure to PM2.5 was associated with total, cardiovascular, and respiratory mortality in both the spring and the fall. In addition, higher mean city-level radon concentrations increased PM2.5-associated mortality in the spring and fall. For example, a 10 µg/m3 increase in PM2.5 in the spring at the 10th percentile of city-averaged short-term radon concentrations (21.1 Bq/m3) was associated with a 1.92% increase in total mortality (95% CI: 1.29, 2.55), whereas the same PM2.5 exposure at the 90th radon percentile (234.2 Bq/m3) was associated with a 3.73% increase in total mortality (95% CI: 2.87, 4.59). Results were robust to adjustment for spatial confounders, including average planetary boundary height, population age, percent poverty and tobacco use. While additional research is necessary, this study suggests that radon enhances PM2.5 mortality. This is of significant regulatory importance, as effective regulation should consider the increased risk for particle mortality in cities with higher radon levels.

Implications: In this large national study, city-averaged indoor radon concentration was a significant effect modifier of PM2.5-associated total, cardiovascular, and respiratory mortality risk in the spring and fall. These results suggest that radon may enhance PM2.5-associated mortality. In addition, local radon concentrations partially explain the significant variability in PM2.5 effect estimates across U.S. cities, noted in this and previous studies. Although the concept of PM as a vector for radon progeny is feasible, additional research is needed on the noncancer health effects of radon and its potential interaction with PM. Future air quality regulations may need to consider the increased risk for particle mortality in cities with higher radon levels.  相似文献   

76.
77.
Surendran Nair, Sujithkumar, Kevin W. King, Jonathan D. Witter, Brent L. Sohngen, and Norman R. Fausey, 2011. Importance of Crop Yield in Calibrating Watershed Water Quality Simulation Tools. Journal of the American Water Resources Association (JAWRA) 47(6):1285–1297. DOI: 10.1111/j.1752‐1688.2011.00570.x Abstract: Watershed‐scale water‐quality simulation tools provide a convenient and economical means to evaluate the environmental impacts of conservation practices. However, confidence in the simulation tool’s ability to accurately represent and capture the inherent variability of a watershed is dependent upon high quality input data and subsequent calibration. A four‐stage iterative and rigorous calibration procedure is outlined and demonstrated for Soil Water Analysis Tool (SWAT) using data from Upper Big Walnut Creek (UBWC) watershed in central Ohio, USA. The four stages and the sequence of their application were: (1) parameter selection, (2) hydrology calibration, (3) crop yield calibration, and (4) nutrient loading calibration. Following the calibration, validation was completed on a 10 year period. Nash‐Sutcliffe efficiencies for streamflow over the validation period were 0.5 for daily, 0.86 for monthly, and 0.87 for annual. Prediction efficiencies for crop yields during the validation period were 0.69 for corn, 0.54 for soybeans, and 0.61 for wheat. Nitrogen loading prediction efficiency was 0.66. Compared to traditional calibration approaches (no crop yield calibration), the four‐stage approach (with crop yield calibration) produced improved prediction efficiencies, especially for nutrient balances.  相似文献   
78.
Emission of particulate matter (PM) is one of the major air quality concerns for large beef cattle feedlots. Effective treatments on the uncompacted soil and manure mixture of the pen surface may help in reducing PM emission from feedlots. A laboratory apparatus was developed for measuring dust-emission potential of cattle feedlot surfaces as affected by pen surface treatments. The apparatus was equipped with a simulated pen surface, four mock cattle hooves, and samplers for PM with equivalent aerodynamic diam. ≤ 10 μm (PM(10)). The simulated pen surface had a layer of dry, loose feedlot manure with a compacted soil layer underneath. Mock hooves were moved horizontally on the manure layer to simulate horizontal action of cattle hooves on the pen surface. High-volume PM samplers were used to collect emitted dust. Effects of hoof speed, depth of penetration, and surface treatments with independent candidate materials (i.e., sawdust, wheat straw, hay, rubber mulch, and surface water application) on PM(10) emission potential of the manure layer were investigated. Our laboratory study showed PM(10) emission potential increased with increasing depth of penetration and hoof speed. Of the surface treatments evaluated, application of water (6.4 mm) and hay (723 g m(-2)) exhibited the greatest percentage reduction in PM(10) emission potential (69 and 77%, respectively) compared with the untreated manure layer. This study indicated application of hay or other mulch materials on the pen surface might be good alternative methods to control dust emission from cattle feedlots.  相似文献   
79.
A method utilizing size exclusion liquid chromatography (SEC) was developed to separate and quantify large molecular cobalt (Co) (e.g., albumin-Co) from cyanocobalamin (vitamin B12) and small molecular Co (e.g., glutathione-Co and free Co) in human serum. Highly selective and sensitive detection using inductively coupled plasma–mass spectrometry was coupled with SEC to provide a method with reliable accuracy, precision, recoveries, stability, and a detection limit of 0.037 μg/L in undiluted serum. Other divalent metal cations known to compete with Co(II) for serum albumin-binding sites (such as iron, zinc, manganese, cadmium, copper, nickel, and lead) did not significantly alter Co(II) quantification. Co–protein binding capacity determination of individual serum samples indicated that addition of 2500 μg Co/L to undiluted human serum resulted in approximately 90% distribution to the large molecular Co peak, consistent with Co binding to high-affinity divalent metal binding sites on albumin. Since serum albumin binding partially sequesters biologically active Co(II) ions, this method provides an important tool for better understanding the kinetics and toxicology of Co compounds. Thus, the proposed method might play an important role in establishing Co dose–response relationships that affect the equilibrium concentrations of free ionic Co(II).  相似文献   
80.
Although the development community has long recognised that securing land tenure and improving housing design can benefit significantly informal settlement residents, there is little research on these issues in communities exposed to natural disasters and hazards. Informal settlements often are located on land left vacant because of inherent risks, such as floodplains, and there is a long history worldwide of disasters affecting informal settlements. This research tackles the following questions: how can informal settlement vulnerabilities be reduced in a post‐disaster setting?; and what are the key issues to address in post‐disaster reconstruction? The main purpose of the paper is to develop a set of initial guidelines for post‐disaster risk reduction in informal settlements, stressing connections to tenure and housing/community design in the reconstruction process. The paper examines disaster and reconstruction responses in two disaster‐affected regions—Jimani, Dominican Republic, and Vargas State, Venezuela—where informal settlements have been hit particularly hard.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号